The normals at three points· P,Q and R of the parabola y2

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If the vertices of a· triangle are A(0, 4, 1), B(2, 3, - 1) and C(4, 5, 0), then the orthocentre of ABC, is

  • (4, 5, 0)

  • (2, 3, - 1)

  • (- 2, 3, - 1)

  • (2, 0, 2)


2.

If r = 2r - 1Crm1m2 - 12mm + 1sin2m2sin2msin2m + 1, then the value of r = 0mr

  • 1

  • 0

  • 2

  • None of these


3.

Two lines x - 12 = y + 13 = z - 14 and x - 31 = y - k2 = z intersect at a point, if k is equal to

  • 29

  • 12

  • 92

  • 16


4.

The statement p  q  ~ p  q is

  • tautology

  • contradiction

  • Neither (a) nor (b)

  • None of these


Advertisement
5.

If x + iy = 32 + cosθ + isinθ,  then x2 + y2 is equal to

  • 3x - 4

  • 4x - 3

  • 4x + 3

  • None of these


6.

The negation of ~ p  q  p  ~ q is

  • p  ~ q  ~ p  q

  • ~ p   q  ~ p  q

  • p  ~ q  ~ p  q

  • p  ~ q  p  ~ q


Advertisement

7.

The normals at three points· P,Q and R of the parabola y2 = 4ax meet at (h, k). The centroid of the PQR lies on

  • x = 0

  • y = 0

  • x = - a

  • y = a


B.

y = 0

We know that, the sum of ordinates of feet of normals drawn from a point to the parabola, y2 = 4ax is always zero.

Now, as normals at three points P,Q and R of parabola y2 = 4ax meet at (h, k):

 The normals from (h,k) to y2 = 4ax meet the parabola at P, Q and R.

 y-coordinates y1, y2, y3 of these points P,Q and R will be zero

 y-coordinate of the centroid of POR

i. e. , y1 + y2 + y33 = 03 = 0

Hence, centroid lies on y = 0.


Advertisement
8.

The minimum area of the triangle formed by any tangent to the ellipse ( x2/a2 ) + ( y2/b2 ) = 1 with the coordinate axes is

  • a2 + b2

  • ( a + b )2/2

  • ab

  • ( a - b )2/2


Advertisement
9.

If the line lx + my - n = 0 will be a normal to the hyperbola, then a2l2 - b2m2 = a2 + b22k, where k is equal to

  • n

  • n2

  • n3

  • None of these


10.

If cosα + isinα, b = cosβ + isinβ, c = cosγ + isinγ and bc + ca + ab = 1, then cosβ - γ + cosγ - α + cosα - β is equal to

  • 32

  • 32

  • 0

  • 1


Advertisement