If cosα + isinα, b = co

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If the vertices of a· triangle are A(0, 4, 1), B(2, 3, - 1) and C(4, 5, 0), then the orthocentre of ABC, is

  • (4, 5, 0)

  • (2, 3, - 1)

  • (- 2, 3, - 1)

  • (2, 0, 2)


2.

If r = 2r - 1Crm1m2 - 12mm + 1sin2m2sin2msin2m + 1, then the value of r = 0mr

  • 1

  • 0

  • 2

  • None of these


3.

Two lines x - 12 = y + 13 = z - 14 and x - 31 = y - k2 = z intersect at a point, if k is equal to

  • 29

  • 12

  • 92

  • 16


4.

The statement p  q  ~ p  q is

  • tautology

  • contradiction

  • Neither (a) nor (b)

  • None of these


Advertisement
5.

If x + iy = 32 + cosθ + isinθ,  then x2 + y2 is equal to

  • 3x - 4

  • 4x - 3

  • 4x + 3

  • None of these


6.

The negation of ~ p  q  p  ~ q is

  • p  ~ q  ~ p  q

  • ~ p   q  ~ p  q

  • p  ~ q  ~ p  q

  • p  ~ q  p  ~ q


7.

The normals at three points· P,Q and R of the parabola y2 = 4ax meet at (h, k). The centroid of the PQR lies on

  • x = 0

  • y = 0

  • x = - a

  • y = a


8.

The minimum area of the triangle formed by any tangent to the ellipse ( x2/a2 ) + ( y2/b2 ) = 1 with the coordinate axes is

  • a2 + b2

  • ( a + b )2/2

  • ab

  • ( a - b )2/2


Advertisement
9.

If the line lx + my - n = 0 will be a normal to the hyperbola, then a2l2 - b2m2 = a2 + b22k, where k is equal to

  • n

  • n2

  • n3

  • None of these


Advertisement

10.

If cosα + isinα, b = cosβ + isinβ, c = cosγ + isinγ and bc + ca + ab = 1, then cosβ - γ + cosγ - α + cosα - β is equal to

  • 32

  • 32

  • 0

  • 1


D.

1

We have,

a = cosα + isinαb = cosβ + isinβc = cosγ + isinγ

Now, bc =  cosβ + isinβcosγ + isinγ × cosγ - isinγcosγ - isinγ= cosβ . cosγ + sinβ . sinγ + isinβ . cosγ - sinγ . cosβ           bc = cosβ - γ + isinβ - γ              ...(i)Similarly, ca = cosγ - α + isinγ - α              ...(ii)and          ab = cosα - β + isinα - β             ...(iii)On adding Eqs. (i),(ii), and (iii), we getcosβ - γ + cosγ - α + cosα - β + isinβ - γ + sinγ - α + sinα - β= 1                     as given bc + ca + ab = 1On equating real parts, we getcosβ - γ + cosγ - α + cosα - β = 1

 


Advertisement
Advertisement