If the determinant ∆ = 3- 2sin3θ-

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The values of x, y and z for the system of equations x + 2y + 3z = 6, 3x - 2y + z = 2 and 4x + 2y + z = 7 are respectively

  • 1, 1, 1

  • 1, 2, 3

  • 1, 3, 2

  • 2, 3, 1


Advertisement

2.

If the determinant  = 3- 2sin3θ- 78cos2θ- 11142 = 0, then the value of sinθ is

  • 13or 1

  • 12 or 32

  • 0 or 12

  • None of these


C.

0 or 12

Given,  = 3- 2sin3θ- 78cos2θ- 11142Applying R2  R2 + 4R1 and R3  R3 + 7R1, we get3- 2sin3θ50cos2θ + 4sin3θ1002 + 7sin3θ = 0     252 + 7sin3θ - 10cos2θ + 4sin3θ = 0                   2 + 7sin3θ - 2cos2θ - 8sin3θ = 0                                        2 - 2cos2θ - sin3θ = 0                              sinθ4sin2θ + 4sinθ - 3 = 0 sinθ = 0 or 2sinθ - 1 = 0 or 2sinθ + 3 = 0                                               sinθ = 0 or sinθ = 12


Advertisement
3.

The relation R in R defined by R = {(a, b): a  b3), is

  • reflexive

  • symmetric

  • transitive

  • None of these


4.

The value of 2tan-1csctan-1x - tancot-1x is

  • tan-1x

  • tan(x)

  • cot(x)

  • csc-1x


Advertisement
5.

Let f (x + y) = f(x) + f(y) for all x and y. If the function f(x) is continuous at x = 0, then f(x) is continuous

  • only at x = 0

  • at x  R - 0

  • for all x

  • None of these


6.

Let fx = x2sin1x, x  00,             x = 0. Then, f(x) is continuous but not differentiable at x = 0, if

  • n  0, 1

  • n  [1, )

  • n  - , 0

  • n = 0


7.

The altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is

  • r2

  • r3

  • 3r4

  • 4r3


8.

If in a ABCsin3A + sin3B + sin3C = 3sinAsinBsinC, then the value of determinant abcbcacab is equal to

  • 0

  • 1

  • 2

  • 3


Advertisement
9.

Let f(x) = x(x - 1)2, the point at which f(x) assumes maximum and minimum are respectively

  • 13, 1

  • 1, 13

  • 3, 1

  • None of these


10.

Rectangles are inscribed ina circle of radius r. The dimensions of the rectangle which has the maximum area, are

  • r, r

  • 2r, 2r

  • 2r, 2r

  • None of the above


Advertisement