The approximate value of f(x) = x3 + 5x2 - 7x + 9 at x = 1.1 is

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If A = 110215121, then a11A21 + a12A22 + a13A23 is equal to

  • 1

  • 0

  • - 1

  • 2


2.

If Rolle's theorem for f(x) = exsinx - cosx is verified on π4, 5π4, then the value of c is

  • π3

  • π2

  • 3π4

  • π


3.

If 2tan-1cosx = tan-12cscx, then sinx + cosx is equal to

  • 22

  • 2

  • 12

  • 12


Advertisement

4.

The approximate value of f(x) = x3 + 5x2 - 7x + 9 at x = 1.1 is

  • 8.6

  • 8.5

  • 8.4

  • 8.3


A.

8.6

Given, f(x)= x3 +5x2 - 7x + 9On differentiating both sides w. r. t. x, we getf'(x) = 3x2 + 10x - 7Let x = 1 and x = 0.1, so thatfx + x = f1 + 0.1 = f1.1We know that,fx + x = fx + xf'x                 = x3 +5x2 - 7x + 9 + x × 3x2 + 10x - 7Put x = 1 and x = 0.1, we get

f 1 + 0.1     = 13 + 512 - 71 + 9 + 0.1 × 3 × 12 + 10 × 1 - 7 f1.1 = 1 + 5 - 7 + 9 + 0.13 + 10 - 7                = 8 + 0.16  = 8 + 0.6 = 8.6


Advertisement
Advertisement
5.

The point on the curve 6y = x3 + 2 at which y-coordinate is changing 8 times as fast as x-coordinate is

  • (4, 11)

  • (4, - 11)

  • (- 4, 11)

  • (- 4, - 11)


6.

If the function f(x) defined by

fx = xsin1x, for x  0k,            for x  = 0

is continuous at x = 0, then k is equal to

 

  • 0

  • 1

  • - 1

  • 12


7.

If y = emsin-1x and 1 - x2dydx2 = Ay2, then A is equal to

  • m

  • - m

  • m2

  • - m2


8.

tan-13 - sec-1- 2csc-1- 2 + cos-1- 12 is equal to

  • 45

  • - 45

  • 35

  • 0


Advertisement
9.

For what value of k, the function defined by

f(x) = log1 + 2xsinx°x2, for x  0k                             , for x = 0

is continuous at x = 0 ?

  • 2

  • 12

  • π90

  • 90π


10.

If log10x2 - y2x2 + y2 = 2, then dydx is equal to

  • - 99x101y

  • 99x101y

  • - 99y101x

  • 99y101x


Advertisement