The locus of the point representing the complex number z for whic

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The domain of the function f(x) = log0.5x! is

  • 0, 1, 2, 3, ...

  • 0, 1, 2, 3, ...

  • 0, 

  • 0, 1


2.

If f(x) = x - 1 + x - 2 + x - 3, 2 < x < 3, then f is

  • an onto function but not one-one

  • one-one function but not onto

  • a bijection

  • neither one-one nor onto


3.

The greatest positive integer which divides (n + 16)(n + 17)(n + 18)(n +19), for all positive integers n, is

  • 6

  • 24

  • 28

  • 20


4.

If x1, x2, x3 as well as y1, y2, yare in geometric progression with the same common ratio,then the points, x1, y1, x2, y2, x3, y3 are

  • vertices of an equilateral triangle

  • vertices of a right angled triangle

  • vertices of a right angled isosceles triangle

  • collinear


Advertisement
Advertisement

5.

The locus of the point representing the complex number z for which z + 32 - z - 32 = 15 is

  • a circle

  • a parabola

  • a straight line

  • an ellipse


C.

a straight line

We have,z +32 - z - 32 = 15Let z = x + iy x + iy + 32 - x + iy - 32 = 15 x + 32 + y2 - x - 32 - y2 = 15 x2 + 6x + 9 - x2 + 6x - 9 = 15 x2 = 6x + 9 - x2 + 6x - 9 = 15 12x = 15  4x = 5which re[resents a straight line


Advertisement
6.

1 + i20161 - i2014 = ?

  • - 2i

  • 2i

  • 2

  •  - 2


7.

 If 1, z1, z2, ..., zn - 1 are the nth roots of unity,then 1 - z11 - z2 ... 1 - zn - 1 = ?

  • 0

  • n - 1

  • n

  • 1


8.

If 124 + 2x2 = 2433x2 - 2, then x is equal to

  • ± 1312

  • ± 145

  • ± 1213

  • ± 514


Advertisement
9.

The product and sum of the roots of the equation x2 - 5x - 24 = 0 are respectively

  • - 64, 0

  • - 24, 5

  • 5, - 24

  • 0, 72


10.

The number of real roots of the equation x5 +3x3 + 4x + 30 = 0 is

  • 1

  • 2

  • 3

  • 5


Advertisement