Define fx = x2 + bx + c, 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

The distance between the focii of the ellipse
x = 3cosθ, y = 4sinθ is

  • 27

  • 72

  • 7

  • 37


42.

The equations of the latus rectum of the ellipse
9x2 + 25y2 - 36x + 50y - 164 = 0 are

  • x - 4 = 0, x + 2 = 0

  • x - 6 = 0, x + 2 = 0

  • x + 6 = 0, x - 2 = 0

  • x + 4 = 0, x + 5 = 0


43.

The values of m for which the line y = mx + 2
becomes a tangent to the hyperbola 4x2 - 9y2 = 36 is

  • ± 23

  • ± 223

  • ± 89

  • ± 423


44.

The harmonic conjugate of (2, 3, 4) with respect to the points (3, - 2, 2), (6, - 17, - 4) is

  • 12, 13, 14

  • 185, - 5, 45

  • - 185, 54, 45

  • 185, - 5, - 45


Advertisement
45.

If a line makes angles α, β, γ and δ with the four diagonals of a cube, then the valueof sin2α +sin2β + sin2γ + sin2δ is

  • 43

  • 83

  • 73

  • 53


46.

limx06x - 3x - 2x + 1x2 = ?

  • loge2loge3

  • loge5

  • loge6

  • 0


Advertisement

47.

Define fx = x2 + bx + c, x < 1x, x  1 If fx is differentiable at x = 1, then b - c = ?

  •  - 2

  • 0

  • 1

  • 2


A.

 - 2

Given,fx = x2 + bx + c, x < 1x, x  1 fx is differentiable at x = 1 f'x = 2x + b, x < 11, x 1Now, fx is differentiable at x = 1 f'1- = f'1+  2 + b = 1  b = - 1fx is differential at x = 1 fx is contineous at x = 1 limx1-x2  + bx + c = limx1+x = 1 1 + b + c = 1 1 - 1 + c = 1  c = 1Hence, b - c = - 1 - 1 = - 2


Advertisement
48.

If x = a is a root of multiplicity two of a polynomial equation f(x) = 0, then

  • f'(a) = f''(a) = 0

  • f''(a) = f(a) = 0

  • f'a  0  f''(a)

  • fa = f'a = 0, f''a  0


Advertisement
49.

If A > 0, B > 0 and A + B = π3, then the maximum value of AtanB is

  • 13

  • 13

  • 12

  • 3


50.

The equation of the common tangent drawn to the curves y = 8x and xy = - 1 is

  • y = 2x + 1

  • 2y = x + 6

  • y = x + 2

  • 3y = 8x + 2


Advertisement