For a invertible matrix A if A(adjA) = 100010 then A =

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The maximum value of  is

  • e

  • e2

  • 1e2


2.

If g(x) is the inverse function of f(x) and f'x = 11 +x4, then g'(x) is

  • 1 + [g(x)]4

  • 1 - [g(x)]4

  • 1 + [f(x)]4

  • 11 + g(x)4


3.

The inverse of the matrix 10033052- 1 is

  • - 13- 30031092- 3

  • - 13- 3003- 10- 9- 23

  • - 133003- 10- 9- 23

  • - 13- 300- 3- 10- 9- 23


4.

If the function f(x) = tanπ4 + x1x for x  0 is  = K for x = 0 continuous at x = 0, then K = ?

  • e

  • e- 1

  • e2

  • e- 2


Advertisement
Advertisement

5.

For a invertible matrix A if A(adjA) = 100010 then A =

  • 100

  • - 100

  • 10

  • - 10


C.

10

Given, Aadj A = 100010 = 101001 = 10 IWe know that,           Aadj A = A IOn comparing both sides, we get                  A = 10


Advertisement
6.

If x = f(t) and y = g(t) are differentiable functions of t, then d2ydx2 is

  • f't . g''t - g't . f''tf't3

  • f't . g''t - g't . f''tf't2

  • g't . f''t - f't . g''tf't3

  • g't . f''t + f't . g''tf't3


7.

If α and β are roots of the equation x2 + 5x - 6 = 0, then the value of tan-1α - tan-1β is

  • π2

  • 0

  • π

  • π4


8.

If the volume of spherical ball is increasing at the rate of 4π cm3/s, then the rate of change of its surface area when the volume is 288 π cm3, is

  • 43π cm2/s

  • 23π cm2/s

  • 4π cm2/s

  • 2π cm2/s


Advertisement
9.

If f(x) = = logsec2xcot2x for x  0= K                         for x = 0 is continuous at x = 0, then K is

  • e- 1

  • 1

  • e

  • 0


10.

If the inverse of the matrix α14- 1231623 does not exist, then the value of α is

  • 1

  • - 1

  • 0

  • - 2


Advertisement