Solve L = sin2π16 -  sin2π8&n

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If α and β are the roots of the equation, 7x2  3x  2 = 0, then the value of α1 - α2 + β1 - β2 is equal to 

  • 124

  • 2736

  • 2716

  • 38


2.

The statement

p  q  p   p p  q is

  • equivalent to p  q  ~ p

  • a contradiction

  • a tautology

  • equivalent to p  q  ~ q


3.

If the line y = mx + c is a common tangent to the hyperbola x2100 - y264 = 1 and the circle x2 + y2 = 36, then which one of the following is true 

  • 4c2 = 369

  • 5m = 4

  • c2 = 369

  • 8m + 5 = 0


4.

If the length of the chord of the circle, x2 + y2 = r2(r > 0) along the line, y – 2x = 3 is r, then r2 is equal to :

  • 95

  • 12

  • 125

  • 245


Advertisement
5.

If the sum of the second,third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is :

  • 213350 - 1

  • 126349 - 1

  • 113350 - 1

  • 126350 - 1


6.

If the mean and the standard deviation of the data 3, 5, 7, a, b are 5 and 2 respectively, then a and b are the roots of the equation : 

  • x2 - 20x + 18 = 0

  • 2x2 - 20x + 19 = 0

  • x2 - 10x + 19 = 0

  • x2 - 10x + 18 = 0


7.

The value of  - 1 + i31 - i30 is : 

  • 65

  • 215i

  • - 215

  •  - 215i


8.

limx0xe1 + x2 + x4 - 1/x - 11 + x2 + x4 - 1

  • does not exist

  • is equal to 1

  • is equal to e

  • is equal to 0


Advertisement
Advertisement

9.

Solve L = sin2π16 -  sin2π8 andM = cos2π16 -  cos2π8

  • M = 142 + 14cosπ8

  • M = 122 + 12cosπ8

  • L =  - L = - 122 + 12cosπ8

  • L = 142 - 14cosπ8


B.

M = 122 + 12cosπ8

L = sinπ16 + π8sinπ16 - π8= sin3π16sin- π16= 12cos3π16 + π16cos3π16 - π16 = 1212 - cosπ8M = cosπ16 + π8cosπ16 - π8= cos3π16cos- π16= 12 cos3π16 + π16 + cos3π16 - π16 = 1212 + cosπ8


Advertisement
10.

If for some α  R, the linesL1 : x + 12 = y - 2 - 1 = z - 11 andL2 :x + 2α = y + 15 - α = z + 11 are coplanar, then the line L2 passes through point :

  • (2, - 10, - 2)

  • (10, 2, 2)

  • ( - 2, 10, 2)

  • (10, - 2, - 2)


Advertisement