A ball of radius R rolls without slipping. Find the fraction

Subject

Physics

Class

NEET Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The displacement x of a particle varies with time t as x = ae-αt + beβt where a, b, α and β are positive constants. The velocity of the particle will

  • decrease with time

  • be independent of α and β

  • drop to zero when α = β

  • increase with time


2.

If A + B = C and that C is perpendicular to A. What is the angle between A and B, if A = B

  • π4 rad

  • π2 rad

  • 3 π4 rad

  • π rad


3.

A body is whirled in a horizontal circle of radius 25 cm. It has an angular velocity of 13 rad/s. What is its linear velocity at any point on circular path?

  • 2 m/s

  • 3 m/s

  • 3.25 m/s

  • 4.25 m/s


4.

Two wires are stretched through same distance. The force constant ofsecond wire is half as that of the first wire. The ratio of work done to stretch first wire and second wire will be

  • 2 : 1

  • 1 : 2

  • 3 : 1

  • 1 : 3


Advertisement
5.

A particle slides down on a smooth incline of inclination 30°, fixed in an elevator going up with an acceleration 2 m/s2. The box of incline has a length 4m. The time taken by the particle to reach the bottom will be

   

  • ( 8/9 ) √3 s

  • ( 9/8 ) √3 s

  • ( 4/3 ) √(√3/2 ) s

  • ( 3/4 ) √(√3/2 ) s


6.

A stone projected with a velocity u at an angle θ with the horizontal reaches maximum height H1. When it is projected with velocity u at an angle π2 - θ with the horizontal, it reaches maximum height H2. The relation between the horizontal range R of the projectile, H1 and H2 is 

  • R = 4 H1 H2

  • R = 4 ( H1 - H2 )

  • R = 4( H1 + H2 )

  • R = H12H22


7.

A light string passes over a frictionless pulley. To one of its ends a mass of 8 kg is attached. To its other end two masses of 7 kg each are attached. The acceleration of the system will be

  

  • 10.2 g

  • 5.10 g

  • 20.36 g

  • 0.27 g


8.

A sphere of mass m moving with velocity v hits inelastically with another stationary sphere of same mass. The ratio of their final velocities will be (in terms of e)

  • v1v2 = 1 + e1 - e

  • v1v2 = 1 - e1 + e

  • v1v2 = 1 + e2

  • v1v2 = 1 - e2


Advertisement
9.

Particles of masses m, 2m, 3m, ... , nm are placed on the same line at distances L, 2L, 3L, ... , nL from O. The distance of centre of mass from O is


Advertisement

10.

A ball of radius R rolls without slipping. Find the fraction of total energy associated with its rotational energy, if the radius of the gyration of the ball about an axis passing through its centre of mass is K.

  • K2K2 + R2

  • R2K2 + R2

  • K2 + R2R2

  • K2R2


A.

K2K2 + R2

 Kinetic energy of rotation is

  Krot122                  

          = 12 MK2 v2R2

 where, k is radius of gyration.

Kinetic energy of translation is Ktran12 Mv2

Thus, total energy, 

          E = Krot + Ktrans

              = 12 MK2 v2R2 +12 Mv2

              = 12 M v2 K2R2 + 1

              = 12 Mv2R2  K2+ R2 

       E= 12 Mv2R2  K2 +R2 

Hence 

     KrotTotal energy, E = 12 MK2 v2R212M v2R2 K2 + R2

      KrotTotal energy E=K2K2 + R2        


Advertisement
Advertisement