Discuss continuity of the function f given by f(x) = | x – 1| + | x – 2 ] at x = 1 and x = 2. - Zigya
Advertisement

Discuss continuity of the function f given by

f(x) = | x – 1| + | x – 2 ] at x = 1 and x = 2.


Here space straight f left parenthesis straight x equals open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar right parenthesis
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of minus below open parentheses open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar close parentheses space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 minus straight h comma space straight h greater than 0 right square bracket
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 0 below open parentheses open vertical bar 1 minus straight h plus 1 close vertical bar plus open vertical bar 1 minus straight h minus 2 close vertical bar close parentheses
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar negative straight h close vertical bar plus open vertical bar negative 1 minus straight h close vertical bar right parenthesis
space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals left parenthesis straight h plus 1 plus straight h right parenthesis equals 0 plus 1 equals 1
space Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below left parenthesis open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar right parenthesis space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 1 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 1 plus straight h minus 1 close vertical bar plus open vertical bar 1 plus straight h minus 2 close vertical bar equals Lt with straight x rightwards arrow 0 below left parenthesis open vertical bar straight h close vertical bar plus open vertical bar left parenthesis 1 minus straight h right parenthesis close vertical bar right parenthesis
space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis straight h plus 1 minus straight h right parenthesis equals Lt with straight h rightwards arrow 0 below 1 equals 1
Also space straight f left parenthesis 1 right parenthesis equals open vertical bar 1 minus 1 close vertical bar plus open vertical bar 1 minus 2 close vertical bar equals 0 plus 1 equals 1
therefore space Lt with straight x rightwards arrow 1 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis
therefore straight f space is space continous space at space straight x equals 1.
∴ f is continuous at .x = 1
space Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of minus below left parenthesis open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x plus 2 close vertical bar right parenthesis space space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 minus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 2 minus straight h minus 1 close vertical bar plus open vertical bar 2 minus straight h minus 2 close vertical bar right parenthesis equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 1 minus straight h close vertical bar plus open vertical bar negative straight h close vertical bar right parenthesis
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 1 minus straight h plus straight h right parenthesis equals 1 minus 0 plus 0 equals 1
space Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis open vertical bar straight x minus 1 close vertical bar plus open vertical bar straight x minus 2 close vertical bar right parenthesis space space space space space space space space space space space space space space space left square bracket Put space straight x equals 2 plus straight h comma space straight h greater than 0 right square bracket
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below open curly brackets open vertical bar 2 plus straight h minus 1 close vertical bar plus open vertical bar 2 plus straight h minus 2 close vertical bar close curly brackets equals Lt with straight h rightwards arrow 0 below left parenthesis open vertical bar 1 plus straight h close vertical bar plus open vertical bar straight h close vertical bar right parenthesis
space space space space space space space space space space space space space space space space space equals Lt with straight h rightwards arrow 0 below left parenthesis 1 plus straight h plus straight h right parenthesis equals 1 plus 0 plus 0 equals 1
Also space straight f left parenthesis 2 right parenthesis equals open vertical bar 2 minus 1 close vertical bar plus open vertical bar 2 minus 2 close vertical bar equals 1 plus 0 equals 1
therefore Lt with straight x rightwards arrow 2 to the power of minus below straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 2 to the power of plus below straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 2 right parenthesis
∴ f is continuous at x = 2.
89 Views

Advertisement

Continuity and Differentiability

Hope you found this question and answer to be good. Find many more questions on Continuity and Differentiability with answers for your assignments and practice.

Mathematics Part I

Browse through more topics from Mathematics Part I for questions and snapshot.