is continuous at x = 0, then find the values of a and b. - Zigya
Advertisement

If space space straight f open parentheses straight x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin open parentheses straight a plus 1 close parentheses plus 2 sinx over denominator straight x end fraction comma space straight x less than 0 end cell row cell 2 space space space space space space space space space space space space space space space space space space space space space space comma space x equals 0 end cell row cell fraction numerator square root of 1 plus b x end root minus 1 over denominator straight x end fraction space space space space space space comma space straight x greater than 0 end cell end table close
is continuous at x = 0, then find the values of a and b.


Given space that space straight f space is space continous space at space straight x space equals space 0

If space space straight f open parentheses straight x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin open parentheses straight a plus 1 close parentheses plus 2 sinx over denominator straight x end fraction comma space straight x space less than space 0 end cell row cell 2 space space space space space space space space space space space space space space space space space space space space space space comma space x equals 0 end cell row cell fraction numerator square root of 1 plus b x end root minus 1 over denominator straight x end fraction space space space space space space comma space straight x space greater than space 0 end cell end table close

Since space straight f left parenthesis straight x right parenthesis space is space continous space at space straight x equals 0 comma space limit as straight x rightwards arrow 0 of straight f space left parenthesis straight x right parenthesis space equals limit as straight x rightwards arrow 0 of straight f space left parenthesis 0 right parenthesis
Thus space straight R. straight H. straight L space equals space limit as straight x rightwards arrow 0 of straight f space left parenthesis straight x right parenthesis

space equals space limit as straight x rightwards arrow 0 of straight f space left parenthesis 0 plus straight h right parenthesis

equals space limit as straight h rightwards arrow 0 of space space fraction numerator square root of 1 plus bh end root minus 1 over denominator straight h end fraction

equals limit as straight h rightwards arrow 0 of space fraction numerator square root of 1 plus bh end root minus 1 over denominator straight h end fraction space straight x space fraction numerator square root of 1 plus bh end root plus 1 over denominator square root of 1 plus bh end root plus 1 end fraction

equals space limit as straight h rightwards arrow 0 of space fraction numerator 1 plus bh minus 1 over denominator straight h left parenthesis square root of 1 plus bh end root plus 1 right parenthesis end fraction

equals space limit as straight h rightwards arrow 0 of space fraction numerator straight b over denominator square root of 1 plus bh end root plus 1 end fraction

equals straight b over 2

Given space that space straight f space left parenthesis straight x right parenthesis space equals space 2

rightwards double arrow space limit as straight x rightwards arrow 0 of straight f space left parenthesis straight x right parenthesis space space equals space straight f left parenthesis 0 right parenthesis

rightwards double arrow space straight b over 2 space space equals space 2 space

rightwards double arrow space straight b equals space 4

Similarly comma space

straight L. straight H. straight L space equals space limit as straight x rightwards arrow 0 of straight f space left parenthesis straight x right parenthesis

space equals space limit as straight x rightwards arrow 0 of straight f space left parenthesis 0 minus straight h right parenthesis

equals space limit as straight h rightwards arrow 0 of fraction numerator sin space left parenthesis straight a plus 1 right parenthesis left parenthesis 0 minus straight h right parenthesis plus 2 sin left parenthesis 0 minus straight h right parenthesis over denominator 0 minus straight h end fraction

equals space limit as straight h rightwards arrow 0 of fraction numerator negative sin left parenthesis straight a plus 1 right parenthesis straight h minus 2 space sin space straight h over denominator negative straight h end fraction

equals space limit as straight h rightwards arrow 0 of fraction numerator negative sin space left parenthesis straight a plus 1 right parenthesis straight h over denominator negative straight h end fraction space plus space limit as straight h rightwards arrow 0 of fraction numerator negative 2 sin space straight h over denominator negative straight h end fraction

equals space limit as straight h rightwards arrow 0 of fraction numerator sin left parenthesis straight a plus 1 right parenthesis straight h over denominator straight h end fraction fraction numerator left parenthesis straight a plus 1 right parenthesis over denominator left parenthesis straight a plus 1 right parenthesis end fraction space plus space 2 stack space lim with straight h rightwards arrow 0 below fraction numerator sin space straight h over denominator straight h end fraction

equals space straight a plus 1 plus 2 space space space space space space open square brackets therefore space lim space fraction numerator sin space straight theta over denominator straight theta end fraction equals 1 space close square brackets

Given space that space straight f space left parenthesis straight x right parenthesis equals 2

rightwards double arrow stack space lim with straight x space rightwards arrow 0 below space straight f space left parenthesis straight x right parenthesis space equals space straight f space left parenthesis 0 right parenthesis
rightwards double arrow space straight a plus 1 plus space 2 space space equals space 2
rightwards double arrow space straight a space equals negative 1
1266 Views

Advertisement

Continuity and Differentiability

Hope you found this question and answer to be good. Find many more questions on Continuity and Differentiability with answers for your assignments and practice.

Mathematics Part I

Browse through more topics from Mathematics Part I for questions and snapshot.