Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2). - Zigya
Advertisement

Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).



Equation space of space line space AB colon negative
space straight y plus 2 space equals fraction numerator 2 plus 3 over denominator 2 end fraction left parenthesis straight x minus 2 right parenthesis
rightwards double arrow space 2 straight y space equals space 5 straight x minus 14
Equation space of space line space BC colon negative
straight y minus 3 space equals 1 half left parenthesis straight x minus 4 right parenthesis
rightwards double arrow space 3 straight y space equals space straight x plus 5
Equation space of space line space CA colon negative
left parenthesis straight y minus 2 right parenthesis space equals negative 4 left parenthesis straight x minus 1 right parenthesis
4 straight x plus straight y equals 6
therefore space ar space left parenthesis increment ABC right parenthesis
equals integral subscript negative 2 end subscript superscript 3 fraction numerator space 2 straight y space plus 14 over denominator 5 end fraction space dy minus integral subscript 2 superscript 3 3 straight y minus 5 dy space minus integral subscript negative 2 end subscript superscript 2 fraction numerator 6 minus straight y over denominator 4 space end fraction dy
equals 75 over 5 minus 5 over 2 minus 24 over 4
equals fraction numerator 300 minus 120 minus 50 over denominator 20 end fraction space equals space 130 over 20
space equals 13 over 2 space sq. space units
1133 Views

Advertisement

Application of Integrals

Hope you found this question and answer to be good. Find many more questions on Application of Integrals with answers for your assignments and practice.

Mathematics Part II

Browse through more topics from Mathematics Part II for questions and snapshot.