Evaluate: ∫ 1 - x2x  1 -&n

Subject

Mathematics

Class

CBSE Class 12

Pre Boards

Practice to excel and get familiar with the paper pattern and the type of questions. Check you answers with answer keys provided.

Sample Papers

Download the PDF Sample Papers Free for off line practice and view the Solutions online.
Advertisement

 Multiple Choice QuestionsLong Answer Type

21.

On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


22.

Find the Cartesian equation of the plane passing through the points A(0, 0, 0) and B(3, -1, 2) and parallel to the line  x - 41 = y + 3-4 = z + 17


23.

Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are   2a + b   and   a - 3b  respectively, externally in the ratio 1:2. Also, show that P is the midpoint of the line segment R.


24.

Evaluate: 0π x1 + sinx  dx


Advertisement
25.

Evaluate:  ex  sin4x - 41 - cos4x dx


Advertisement

26.

Evaluate:  1 - x2x  1 - 2x  dx


1 - x2x  1 - 2x  dxHere 1 - x2x  1 - 2x  is an improper rational  fraction.

Reducing it to proper rational fraction gives

1 - x2x  1 - 2x  = 12 + 12  2 - xx  1 - 2x        .......(i)Now, let 2 - xx  1 - 2x  = Ax + B  1 - 2x  2 - xx  1 - 2x  = A   1 - 2x  + Bxx   1 - 2x  2 - x = A - x 2A - B 

Equating the coefficients we get,  A = 2  and  B = 3

So, 2 - xx  1 - 2x  = 2x + 3 1 - 2x 

Substituting in equation  (i), we get

1 - x2x  1 - 2x  = 12 + 12  2x + 3  1 - 2x i.e.  1 - x2x  1 - 2x  dx  =   12 + 12  2x + 3  1 - 2x   dx                                      =  dx2 + dxx + 32  dx  1 - 2x                                        = x2 + log  x  + 32 x 1 - 2  log  1 - 2x  + C                                    = x2 + log  x  - 34 x  log  1 - 2x  + C.


Advertisement
27.

Find the particular solution of the differential equation satisfying the given conditions: x2 dy + (xy + y2 )dx = 0; y = 1 when x = 1.


28.

Find the general solution of the differential equation,

x log x dydx + y = 2x log x


Advertisement
29.

Find the particular solution of the differential equation satisfying the given conditions:

dydx = y tan x,    given that   y = 1  when   x= 0.


30.

Evaluate 13  3 x2 + 2 x  dx  as limit of sums.


Advertisement