If the axes are rotated through an angle 45° in the positive

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

From a point on the level ground, the angle of elevation of top of a pole is 30° on moving 20metres nearer,the angle of elevation is 45°. Then,the height of the pole in metres, is

  • 103 - 1

  • 103 - 1

  • 15

  • 20


2.

A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected at random, the probability that it is a black or a red ball, is

  • 13

  • 14

  • 512

  • 23


3.

The probability of getting qualified in IITJEE and EAMCET by a student are respectively 15 and 35. The probability that the student gets qualified for atleast one of these test, is

  • 325

  • 825

  • 1725

  • 2225


4.

One die and a coin (both unbiased) are tossed simultaneously. The probability of getting 5 on the top of the die and tail on the coin is

  • 12

  • 112

  • 16

  • 18


Advertisement
Advertisement

5.

If the axes are rotated through an angle 45° in the positive direction without changing the origin,then the co-ordinates of the point (2, 4) in the old system are

  • 1 - 22, 1 + 22

  • 1 + 22, 1 - 22

  • 22, 2

  • 2, 2


A.

1 - 22, 1 + 22

If θ he angle of rotation, then the co-ordinates in the new system are x' = xcosθ + ysinθy' = ycosθ - xsinθ.

Given that, x' = 2, y' = 4Thus, xcosθ + ysinθ = 2ycosθ - xsinθ = 4Also, θ = π4  xcosπ4 + ysinπ4 = 2and cosπ4 - xsinπ4 = 4   x + y = 2           ...iand y - x = 42      ...iiOn adding Eqs. (i) and (ii), we get 2y = 2 + 42 y = 1 +22On subtracting (i) and (ii), we get    2x = 2 - 42 x = 1 - 22Thus, the co-ordinates of 2, 4 in the old system1 - 22, 1 + 22


Advertisement
6.

If a straight line perpendicular to 2x - 3y + 7 = 0 forma triangle with the co-ordinate axes whose area is 3 sq. units, then the equation of the straight line is

  • 3x + 2y = ± 2

  • 3x + 2y = ± 6

  • 3x + 2y = ± 4

  • 3x + 2y = ± 8


7.
  • x2y2/3 + (xy2)23 = 1

  • x2 - y2 = 4xy

  • x2 - y2 = 12xy

  • x2 - y22 = 16xy


8.

If ( - 2, 6) is the image of the point (4, 2) with respect to the line L = 0, then L is equal to

  • 6x - 4y - 7 = 0

  • 2x + 3y - 5 = 0

  • 3x - 2y + 5 = 0 

  • 3x - 2y + 10 = 0


Advertisement
9.

If the co-ordinate axes are the bisectors of the angles between the pair of lines ax2 + 2hxy + by2 = 0 where h2 >ab and a  b, then

  • a + b = 0 

  • h = 0

  • h  0, a + b = 0

  • a + b  0


10.

If the angle 20 is acute, then the acute angle between the pair of straight lines x2cosθ - sinθ + 2xycosθ + y2cosθ + sinθ = 0

  • 2θ

  • θ2

  • θ3

  • θ


Advertisement