Let ABCD be the parallelogram whose sides AB and AD are represent

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

Solution of the equation  is :

  • x + y = a

  • x2 + y2 = a2

  • x + y = a


32.

A bag contains 5 white and 3 black balls and 4 balls are successively drawn out and not replaced. The probability that they are alternately of different colours, is :

  • 1/196

  • 2/7

  • 1/7

  • 13/56


33.

e- logxdx is equal to :

  • e- log(x) + C

  • - xe- log(x) + C

  • elog(x) + C

  • logx + C


34.

The area cut off by the latus rectum from the parabola y2 = 4ax is :

  • (8/3)a sq unit

  • (8/3) a sq unit

  • (3/8)a2 sq unit

  • (8/3)a3 sq unit


Advertisement
35.

The solution of differential equation (x + y )(dx - dy) = dx + dy is :

  • x - y = kex - y

  • x + y = kex + y

  • x + y = k(x - y)

  • x + y = kex - y


36.

ax2a- x - axdx is equal to :

  • 1logasin-1ax + c

  • 1logatan-1ax + c

  • 2a- x - ax + c

  • logax - 1 + c


37.

If g(x) = fx - f- x2  defined over [- 3, 3], and f(x) = 2x2 - 4x + 1, then - 33gxdx is equal to :

  • 0

  • 4

  • - 4

  • 8


Advertisement

38.

Let ABCD be the parallelogram whose sides AB and AD are represented by the vectors 2i + 4j - 5k and i + 2j - 3k respectively. Then, if a is a unit vector parallel to AC, then a equals:

  • 133i - 6j - 2k

  • 133i + 6j + 2k

  • 173i - 6j - 2k

  • 173i + 6j - 2k


D.

173i + 6j - 2k

Let R1 = 2i^ + 4j^ - 5k^and R2 = i^ + 2j^ + 3k^ R along AC = R1 + R2                           = 3i^ + 6j^ - 2k^ aunit vector along AC = RR                         = 3i^ + 6j^ - 2k^9 + 36 + 4                         = 173i + 6j - 2k


Advertisement
Advertisement
39.

The solution of dydx + 1 = cscx +y is  :

  • cosx +y +x = c

  • cosx +y = c

  • sinx +y + x = c

  • sinx +y + sinx +y = c


40.

Let a and b be two unit vectors such that angle between them is 60°. Then a - b is equal to :

  • 5

  • 3

  • 0

  • 1


Advertisement