∫0πxdxa2cos2x + b2sin2xdx is equal to
π2ab
πab
π22ab
The differential equation for which sin-1(x) + sin-1(y) = c is given by
1 - x2dy + 1 - y2dx = 0
1 - x2dx + 1 - y2dy = 0
1 - x2dx - 1 - y2dy = 0
1 - x2dy - 1 - y2dx = 0
∫ex1 + sinx1 + cosxdx is equal to
exsec2x2 + c
extanx2 + c
exsecx2 + c
extanx + c
B.
We have, ∫ex1 + sinx1 + cosxdx= ∫ex1 + 2sinx2cosx22cos2x2∵ sin2x = 2sinxcosx, 1 + cos2x = 2cos2x= ∫ex12cos2x2 + 2sinx2cosx22cos2x2dx= ∫ex12sec2x2 + tanx2∴ exfx + f'x, dx = exfx + cHere, fx = tanx2 and f'x = sec2x2⇒ extanx2 + C∴ ∫ex1 + sinx1 + cosxdx = extanx2 + c
∫1 + sinx4dx is equal to
8sinx8 + cosx8 + C
8sinx8 - cosx8 + C
8cosx8 - sinx8 + C
18sinx8 - cosx8 + C
∫0∞xdx1 + x1 + x2 is equal to
π2
0
1
π4
If In = ∫logxndx, then In + nIn - 1 is equal to
xlogxn
nlogxn
logxn - 1
The area included between the parabolas x2 = 4y and y2 = 4x is (in square units)
43
13
163
83