If the circle x2 + y2 + 6x - 2y + k = 0 bisects the cir

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If the pair of straight lines given by Ax2 + 2Hxy + By2 = 0 (H2 > AB) forms an equilateral triangle with line ax + by + c = 0, then (A + 3B)(3A + B) is equal to :

  • H2

  • - H2

  • 2H2

  • 4H2


12.

The area (in sq units) of the quadrilateral formed by two pairs of lines λ2x2 - m2y2 - nλx + my = 0 and λ2x2 - m2y2 + nλx + my = 0 is :

  • n22λm

  • n2λm

  • n2λm

  • n24λm


Advertisement

13.

If the circle x2 + y2 + 6x - 2y + k = 0 bisects the circumference of the circle x2 + y2 + 2x - 6y - 15 = 0, then k is equal to:

  • 21

  • - 21

  • 23

  • - 23


D.

- 23

Given that,         S1 = x2 + y2 + 6x - 2y + k = 0and    S2 = x2 + y2 + 2x - 6y -15 = 0Since S1 bisects S2, thenChord of S2 = Diameter of S1 Equation of chord is S1 - S2 = 0 x2 + y2 + 6x - 2y + k - x2 + y2 + 2x - 6y -15 = 04x + 4y + k + 15 = 0Centre of the circle of S2 = - 1, 3Since, equation of the chord passes through - 1, 3, then4- 1 + 43 + k + 15 = 0     - 4 +12 +k +15 = 0                                 k = - 23


Advertisement
14.

If P is a point such that the ratio of the square of the lengths of the tangents from P to the circles x2 + y2 + 2x - 4y - 20 = 0 and x2 + y2 - 4x + 2y - 2y - 44 = 0 is 2 : 3, then the locus of P is a circle with centre :

  • (7, - 8)

  • (- 7, 8)

  • (7, 8)

  • (- 7, - 8)


Advertisement
15.

If 5x - 12y + 10 = 0 and 12y - 5x + 16 = 0 are two tangents to a circle, then the radius of the circle is

  • 1

  • 2

  • 4

  • 6


16.

The eccentricity of the ellipse 9x2 + 5y2 - 18x - 20y - 16 = 0, is:

  • 12

  • 23

  • 32

  • 2


17.

The product of the lengths of perpendiculars drawn from any point on the hyperbola x2 - 2y2 - 2 = O to its asymptotes is

  • 12

  • 23

  • 32

  • 2


18.

The equation of the parabola with focus (0, 0)and directrix x + y = 4 is

  • x2 + y2 - 2xy + 8x +8y -16 = 0

  • x2 + y2 - 2xy + 8x + 8y = 0

  • x2 + y2 + 8x + 8y - 16= 0

  • x2 - y2 + 8x +8y - 16= 0


Advertisement
19.

limxπ6 3sinx - 3cosx6x - π is equal to :

  • 3

  • 13

  • 13

  • - 13


20.

If a > 0, limxa ax - xaxx - aa = - 1, then a is equal to :

  • 0

  • 1

  • e

  • 2e


Advertisement