If a > 0, limx→a ax - 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If the pair of straight lines given by Ax2 + 2Hxy + By2 = 0 (H2 > AB) forms an equilateral triangle with line ax + by + c = 0, then (A + 3B)(3A + B) is equal to :

  • H2

  • - H2

  • 2H2

  • 4H2


12.

The area (in sq units) of the quadrilateral formed by two pairs of lines λ2x2 - m2y2 - nλx + my = 0 and λ2x2 - m2y2 + nλx + my = 0 is :

  • n22λm

  • n2λm

  • n2λm

  • n24λm


13.

If the circle x2 + y2 + 6x - 2y + k = 0 bisects the circumference of the circle x2 + y2 + 2x - 6y - 15 = 0, then k is equal to:

  • 21

  • - 21

  • 23

  • - 23


14.

If P is a point such that the ratio of the square of the lengths of the tangents from P to the circles x2 + y2 + 2x - 4y - 20 = 0 and x2 + y2 - 4x + 2y - 2y - 44 = 0 is 2 : 3, then the locus of P is a circle with centre :

  • (7, - 8)

  • (- 7, 8)

  • (7, 8)

  • (- 7, - 8)


Advertisement
15.

If 5x - 12y + 10 = 0 and 12y - 5x + 16 = 0 are two tangents to a circle, then the radius of the circle is

  • 1

  • 2

  • 4

  • 6


16.

The eccentricity of the ellipse 9x2 + 5y2 - 18x - 20y - 16 = 0, is:

  • 12

  • 23

  • 32

  • 2


17.

The product of the lengths of perpendiculars drawn from any point on the hyperbola x2 - 2y2 - 2 = O to its asymptotes is

  • 12

  • 23

  • 32

  • 2


18.

The equation of the parabola with focus (0, 0)and directrix x + y = 4 is

  • x2 + y2 - 2xy + 8x +8y -16 = 0

  • x2 + y2 - 2xy + 8x + 8y = 0

  • x2 + y2 + 8x + 8y - 16= 0

  • x2 - y2 + 8x +8y - 16= 0


Advertisement
19.

limxπ6 3sinx - 3cosx6x - π is equal to :

  • 3

  • 13

  • 13

  • - 13


Advertisement

20.

If a > 0, limxa ax - xaxx - aa = - 1, then a is equal to :

  • 0

  • 1

  • e

  • 2e


B.

1

We have,limxa ax - xaxx - aa = - 1Using L hospital's rule limxa axloga - axa - 1xx - aa = - 1       aaloga - aaa - 1aa1 + loga = - 1 loga - 1 = -1 - loga      2logea = 0 a = e0 = 1


Advertisement
Advertisement