Primitive of cos-1(x) w.r.t. x is
xcos-1x - 121 - x2 + c
xcos-1x - 1 - x2 + c
xcos-1x + 1 - x2 + c
xcos-1x + 121 - x2 + c
If y = log(cot(x)), then ∫0π2ydx is equal to
1
0
π2
π4
A force F→ = 3i^ - j^ acts on a point R (0, 1, 1), then the moment of a force about the point P(0, 1, 0) is
3k^
i^ + 3j^
- i^ - 3j^
i^ + 3j^ - 3k^
∫1sin2x + cos2xdx is equal to
sinx - cosx + c
tanx + cotx + c
cosx + sinx + c
tanx - cotx + c
Let a→ and b→ are non-zero and non-collinear vectors. If there exists scalars α, β such that αa→ + βb→ = 0→, then
α = β ≠ 0
α + β = 0
α = β = 0
α ≠ β
Primitive of 14x + x is equal to
2log1 + 4x + c
12log4 - x + c
2log 4 + x + c
12log 4 + x + c
If G is centroid of ∆ABC, then
G→ = a→ + b→ + c→
G→ = a→ + b→ + c→2
3G→ = a→ + b→ + c→
3G→ = a→ + b→ + c→2
∫exlogx + 1xdx is equal to
exlogx + c
exlogx+ c
logxx + c
exx + c
A.
∫exlogx + 1xdx= ∫exlogx dx + ∫ex . 1xdx= exlogx - ∫ex . 1xdx + ∫ex . 1xdx= exlogx + c
∫01x21 + x2dx is equal to
π4 - 1
1 - π2
π2 - 1
1 - π4
Minimize : z = 3x + y, subject to 2x + 3y ≤ 6, x + y ≥ 1, x ≥ 0, y ≥ 0
x = 1, y = 1
x = 0, y = 1
x = 1, y = 0
x = - 1, y = - 1