Let a→, b→ and c→ be vectors with m

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

dxxx7 + 1 is equal to

  • logx7x7 + 1

  • 17logx7x7 + 1 + c

  • logx7 + 1x7 + c

  • 17logx7 +1x7


22.

The solution of the differential equation dxx + dyy = 0 is

  • xy = c

  • x + y = c

  • log(x)log(y) = c

  • x2 + y2 = c


23.

The differential equation obtained by eliminating arbitrary constants from y = a . ebx, is

  • yd2ydx2 + dydx = 0

  • yd2ydx2 - dydx = 0

  • yd2ydx2 - dydx2 = 0

  • yd2ydx2 + dydx2 = 0


24.

f(x) is a polynomial of degree 2, f(0) = 4, f'(0) = 3 and f''(0) = 4, then f(- 1) is equal to

  • 3

  • - 2

  • 2

  • - 3


Advertisement
25.

Solution of differential equation sec(x)dy - cosec(y)dx = 0 is

  • cos(x) + sin(y) = c

  • sin(x) + cos(y) = 0

  • sin(y) - cos(x) = c

  • cos(y) - sin(x) = c


26.

The point P(9/2, 6) lies on the parabola y2 = 4ax, then parameter of the point P is

  • 3a2

  • 23a

  • 23

  • 32


27.

Using Trapezoidal rule and following table 08fxdx is equal to
x 0 0 4 6 8
f(x) 2 5 10 17 26

 

  • 184

  • 92

  • 46

  • - 36


Advertisement

28.

Let a, b and c be vectors with magnitudes 3, 4 and 5 respectively and a + b + c = 0, then a . b  + b . c + c . a is

  • 47

  • 25

  • 50

  • - 25


D.

- 25

Given, a =  3, b = 4, c = 5 and a + b  + c = 0

On squaring both sides, we get

 a2 + b2 + c2  +2a . b  + b . c + c . a = 0 32 + 42 + 52 + 2a . b  + b . c + c . a = 0 a . b  + b . c + c . a = - 25


Advertisement
Advertisement
29.

Unbiased die is thrown, probability that outcome is greater than 4, is

  • 3/4

  • 4/5

  • 1/3

  • 5/6


Advertisement