If the equation of the locus of a point equidistant from the poin

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

If the vectors and are such that a, c and b form a right handed system, then c is

  • zi^ - xk^

  • 0

  • yj^

  • - zi^ + xk^


22.

The equation of straight line passing through the point (a, b, c) and parallel to Z-axis, is

  • x - a1 = y - b1 = z - c0

  • x - a0 = y - b1 = z - c1

  • x - a1 = y - b0 = z - c0

  • x - a0 = y - b0 = z - c1


Advertisement

23.

If the equation of the locus of a point equidistant from the points (a1, b1) and (a2, b2) is (a1 - a2)r + (b1 - b2)y + c = 0, then the value of 'c' is

  • 12a22 + b22 - a12 - b12

  • a12 - a22 + b12 - b22

  • 12a12 + a22 + b12 + b22

  • a12 + b12 - a22 - b22


A.

12a22 + b22 - a12 - b12

Let P (x, y) be the point which is equidistant from A(a1, b1) and B (a2, b2). PA = PB  PA2 = PB2 x - a12 + y - b12 = x - a22 + y - b22 x2 + a12 - 2a1x + y2 + b12 - 2b1x    = x2 + a22 - 2a2x + y2 + b22 - 2b2y a1 - a2x + b1 - b2y + 12a22 + b22 - a12 - b12But given equation isa1 - a2x + b1 - b2y + c = 0 c = 12a22 + b22 - a12 - b12


Advertisement
24.

A tetrahedron has vertices at 0(0, 0, 0), A(1, 2, 1), B(2, 1, 3) and C(- 1, 1, 2). Then, the angle between the faces OAB and ABC will be

  • cos-11935

  • cos-11731

  • 30°

  • 90°


Advertisement
25.

Distance between parallel planes 2x - 2y + z + 3 = 0 and 4x - 4y + 2z + 5 = 0, is

  • 12

  • 13

  • 14

  • 16


26.

The vector i^ + xj^ + 3k^ is rotated through an angle θ and doubled in magnitude, then it becomes 4i^ + 4x - 2j^ + 2k^. Then, the values of x are

  • - 23, 2

  • 13, 2

  • 23, 0

  • 2, 7


27.

If a = (1, - 1) and b = (- 2, m) are two collinear vectors, then m is equal to

  • 4

  • 3

  • 2

  • 0


28.

Given two vectors i^ - j^ and i^ + 2j^, the unit vector coplanar with the two vectors and perpendicular to first, is

  • 12i^ + j^

  • 152i^ + j^

  • ± 12i^ + j^

  • None of these


Advertisement
29.

For any vector a i^ × a × i^ + j^ × a × j^ + k^ × a × k^ is equal to

  • 2a

  • 3a

  • - 2a

  • a


30.

If the a, band c form the sides BC, CA and AB respectively, of a ABC, then

  • a . b + b . c + c . a = 0

  • a × b = b × c = c × a

  • a . b = b . c = c . a = 0

  • a × b + b × c + c × a


Advertisement