The centre of the circle r2 - 4rcosθ +&

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

If the line 3x - 2y + 6 = 0 meets X-axis and Y-axis, respectively at A and B, then the equation of the circle with radius AB and centre at A is

  • x2 + y2 + 4x + 9 = 0

  • x2 + y2 + 4x - 9 = 0

  • x2 + y2 + 4x + 4 = 0

  • x2 + y2 + 4x - 4 = 0


42.

A line l meets the circle x2 + y2 = 61 in A, B and P(- 5, 6) is such that PA = PB = 10. Then,the equation of l is

  • 5x + 6y + 11 = 0

  • 5x - 6y - 11 = 0

  • 5x - 6y + 11 = 0

  • 5x - 6y + 11 = 0


43.

If (1, a), (b, 2) are conjugate points with respect to the circle x2 + y2 = 25, then 4a + 2b is equal to

  • 25

  • 50

  • 100

  • 150


44.

The eccentricity of the conic 36x2 + 144y2 - 36x - 96y -119 = 0 is

  • 32

  • 12

  • 34

  • 13


Advertisement
45.

The polar equation cosθ + 7sinθ = 1r represents a

  • circle

  • parabola

  • straight line

  • hyperbola


Advertisement

46.

The centre of the circle r2 - 4rcosθ + sinθ - 4 = 0 in cartesian coordinates is

  • (1, 1)

  • (- 1, - 1)

  • (2, 2)

  • (- 2, - 2)


C.

(2, 2)

Given that polar form of the circle is

r2 - 4rcosθ + sinθ - 4 = 0         ...iPut x = rcosθ and y = rsinθ r2 = x2 + y2From Eqs. (i)r2 - 4rcosθ + rsinθ - 4 = 0   x2 + y2 - 4x + y - 4 = 0   x2 + y2 - 4x - 4y - 4 = 0 Centre of circle (2, 2).


Advertisement
47.

The radius of the circle r = 3sinθ + cosθ is

  • 1

  • 2

  • 3

  • 4


48.

The value of limn1n3k=1nk2x is

  • x

  • x2

  • x3

  • x4


Advertisement
49.

If f(x) = x, if - 3 < x  - 1x, if - 1 < x <1x,   if 1  x < 3 then the set x : fx  0 is equal to

  • (- 1, 3)

  • [- 1, 3)

  • (- 1, 3]

  • [- 1, 3)


50.

If f: R  R is an even function having derivatives of all orders, then an odd function among the following is

  • f''

  • f'''

  • f' + f''

  • f'' + f'''


Advertisement