Observe the following statementsI. If dy + 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

 is equal to

  • π23

  • π2

  • π24


72.

If sin-12x1 + x2dx = fx - log1 + x2 then f(x) is equal to

  • 2xtan-1(x)

  • - 2xtan-1(x)

  • xtan-1(x)

  • - xtan-1(x)


73.

If dx + dy = (x + y)dx - dy, then logx + y = ?

  • x + y + c

  • x + 2y + c

  • x - y + c

  • 2x + y + c


74.

If x2y - x3dydx = y4cosx, then x3y- 3 is equal to

  • sin(x)

  • 2sin(x) + c

  • - 3sin(x) + c

  • 3cos(x) + c


Advertisement
Advertisement

75.

Observe the following statements

I. If dy +2xydx = 2e- x2dx, then yex2 = 2x + c,II. If ye- x2 - 2x = c, thendx = 2e- x2 - 2xydywhich of the following is correct statement

  • Both I and II are true

  • Neither I nor II is true

  • I is false, But II is true

  • I is true, But II is false


D.

I is true, But II is false

I. dy + 2xydx = 2e- x2dxdydx +2xy = 2e- x2This is linear differential equationin yHere,P = 2x, Q = 2e- x2I.F. = ePdx = 2e2 xdx = ex2  Complete solution is yex2 = 2 e- x2ex2dx +c yex2 = 2x +cII. yex2 - 2x = cOn differentiating w.r.t. x, we getyex2 2x +ex2dydx - 2 = 0 ex2dydx = 2 - 2xyex2 dydx = 2e- x2 - 2xy I is true and II is false.


Advertisement
76.

If dydx = y +xtanyxx, then sinyx is equal to

  • cx2

  • cx

  • cx3

  • cx4


77.

The area (in square units) bounded by the curves y2 = 4x and x2 = 4y in the plane is

  • 83

  • 163

  • 323

  • 643


78.

The function f: C  C defined, by fx = ax + dcx + d for x  C where bd  0 reduces to a constant function, if

  • a = c

  • b = d

  • ad = bc

  • ab = cd


Advertisement
79.

If tan3AtanA = a, then sin3AsinA is equal to

  • 2aa + 1

  • 2aa - 1

  • aa + 1

  • aa - 1


80.

The parabola with directrix x + 2y - 1 = 0 and focus (1, 0) is

  • 4x2 - 4xy + y2 - 8x + 4y + 4 = 0

  • 4x2 + 4xy + y2 - 8x + 4y + 4 = 0

  • 4x2 + 5xy + y2 + 8x - 4y + 4 = 0

  • 4x - 4xy + y - 8x - 4y + 4 = 0


Advertisement