∫π6π3dx1 + tanx is equal to
π12
π2
π6
π4
A.
∫π6π3dx1 + tanx= ∫π6π3cosxsinx + cosxdx ...(i)= ∫π6π3cosπ2 - xsinπ2 - x + cosπ2 - xdx⇒ I = ∫π6π3sinxcosx + sinxdx ...(ii)On adding Eqs. (i) and (ii), we get 2I = ∫π6π31dx = xπ6π3 = π3 - π6 = π6⇒ I = π12
If f is a continuous function, then
∫- 22f(x)dx = ∫02f(x) - f(- x)dx
∫- 352f(x)dx = ∫- 610fx - 1dx
∫- 35fxdx = ∫- 44fx - 1dx
∫- 35fxdx = ∫- 26fx - 1dx
An integrating factor of the differential equation
xdydx + ylogx = xexx12logx, (x > 0), is
xlogx
elogx2
ex2
Solution of the differential equation
dydxtany = sinx + y + sinx - y
secy + 2cosx = c
secy - 2cosx = c
cosy - 2sinx = c
tany - 2secy = c
Four persons are chosen at random from a group of 3 men, 2 women and 4 children. The chance that exactly 2 of them are children, is
1021
1113
1325
2132