The function f : X → Y defined by f(x) = sin(x) is one-

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If 2A + 3B = 2- 14325 and A + 2B = 503162, then B is

  • 8- 12- 110- 1

  • 812- 110- 1

  • 81- 2- 110- 1

  • 8121101


2.

If O(A) = 2 x 3, O(B) = 3 x 2, and O(C) = 3 x 3, which one ofthe following is not defined?

  • CB  + A'

  • BAC

  • C(A + B')'

  • C(A + B')


3.

If A = 1- 32k and A2 - 4A + 10I = A, then k is equal to :

  • 0

  • - 4

  • 4 and not 1

  • 1 or 4


4.

The value of x + yy + zz +xxyzx - yy - zz - x is equal to :

  • 2(x + y + z)2

  • 2(x + y + z)3

  • (x + y + z)3

  • 0


Advertisement
5.

On the set Q of all rational numbers the operation * which is both associative and commutative is given by a * b, is :

  • a + b + ab

  • a2 + b2

  • ab + 1

  • 2a + 3b


6.

If cos-1x = α, 0 < x < 1 and sin-12x1 - x2 + sec-112x2 - 1 = 2π3, then tan-12x equals :

  • π6

  • π4

  • π3

  • π2


7.

If a > b > 0, then the value of tan-1ab + tan-1a + ba - b depends on :

  • both a and b

  • b and not a

  • a and not b

  • neither a nor b


Advertisement

8.

The function f : X  Y defined by f(x) = sin(x) is one-one but not onto, if X and Y are respectively equal to :

  • R and R

  • 0, π and 0, 1

  • 0, π2 and - 1, 1

  • - π2, π2 and - 1, 1


C.

0, π2 and - 1, 1

Since f : X  Y, then f(x) = sin(x)Now, take option (c)Domain = 0, π2 and Range = - 1, 1

For every value of x, we get unique value of y. But the value of y in [-1, 0) does not have any pre-image.

Thus, Function is one-one but not onto.


Advertisement
Advertisement
9.

In the group G = {1, 5, 7, 11} under multiplication modulo 12, the solution of 7- 1 12 x 12 11 = 5 is equals :

  • 5

  • 1

  • 7

  • 11


10.

If the curve y = 2x3 + ax2 + bx + c passes through the origin and the tangents drawn to it at x = - 1 and x = 2 are parallel to the x-axis, then the values of a, b and c are respectively :

  • 12, - 3 and 0

  • - 3, - 12 and 0

  • - 3, 12 and 0

  • 3, - 12 and 0


Advertisement