The locus of middle point of chords of hyperbola 3x2 - 2y2 + 4x -

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The equation of bisectors of the angles between the lines x = y are

  • y = ± x and x = 0

  • x = 12 and y = 12

  • y = 0 and x = 0

  • None of the above


2.

The equation of the pair of straight lines parallel to x-axis and touching the circle x2 + y2- 6x - 4y -12 = 0 is

  • y2 - 4y - 21 = 0

  • y2 + 4y - 21 = 0

  • y2 - 4y + 21 = 0

  • y2 + 4y + 21 = 0


3.

If the lines 3x - 4y - 7 = 0 and 2x - 3y - 5 = 0 are two diameters of a circle of area 49π sq unit, then equation of the circle is

  • x2 + y2 + 2x - 2y - 62 = 0

  • x2 + y2 - 2x + 2y - 62 = 0

  • x2 + y2 - 2x + 2y - 47 = 0

  • x2 + y2 + 2x - 2y - 47 = 0


Advertisement

4.

The locus of middle point of chords of hyperbola 3x2 - 2y2 + 4x - 6y = 0 parallel to y = 2x is

  • 3x - 4y = 4

  • 3x - 4x + 4 = 0

  • 4x - 3y = 3

  • 3x - 4y = 2


A.

3x - 4y = 4

Let (h, k) be mid-point of chord.

Then, its equation is T = S1

 3hx - 2ky +2x + h - 3y + k = 3h2 - 2k2 + 4h - 6k              x3h + 2 + y- 2k - 3 = 3h2 - 2k2 + 2h - 3k

Since, this line is parallel to y = 2x

 3h + 22k + 3 = 2

   3h + 2 = 4k + 6 3h - 4k = 4

Thus, locus of point is,

    3x - 4y = 4


Advertisement
Advertisement
5.

If z + 4  3, then the greatest and the least value of z + 1 are

  • 6, - 6

  • 6, 0

  • 7, 2

  • 0, - 1


6.

The real part of 1 - cosθ + 2isinθ- 1

  • 13 + 5cosθ

  • 15 - 3cosθ

  • 13 - 5cosθ

  • 15 + 3cosθ


7.

The value of sin36°sin72°sin108°sin144° is equal to

  • 14

  • 116

  • 34

  • 516


8.

If sinA = 110 and sinB = 15 where A and B are positive acute angles, then A + B is equal to 

  • π

  • π2

  • π3

  • π4


Advertisement
9.

dndxnlogx is equal to

  • n - 1!Xn

  • n !Xn

  • n - 2!Xn

  • - 1n - 1n - 1!Xn


10.

The larger of 9950 + 10050 and 10150 is

  • 9950 + 10050

  • both are equal

  • 10150

  • None of the above


Advertisement