The value of ∫35x2x2 - 4dx from Mathematics J

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

The value of the integral - π4π4sin- 4xdx is

  • - 83

  • 32

  • 83

  • None of these


82.

The solution of the differential equation xdy - ydx = x2 + y2dx is

  • x + x2 + y2 = cx2

  • y - x2 + y2 = cx2

  • x - x2 + y2 = cx

  • y + x2 + y2 = cx2


83.

The differential equation of all non-vertical lines in a plane is

  • d2ydx2 = 0

  • d2xdy2 = 0

  • dydx = 0

  • dxdy = 0


84.

x + 2x + 42exdx is equal to

  • exxx + 4 +C

  • exx + 2x + 4 +C

  • exx - 2x + 4 +C

  • ex2xexx + 4 +C


Advertisement
Advertisement

85.

The value of 35x2x2 - 4dx

  • 2 - loge157

  • 2 + loge157

  • 2 + 4loge3 - 4loge7 + 4loge5

  • 2 - tan-157


B.

2 + loge157

Let I = 35x2x2 - 4dx= 35x2 - 4x2 - 4 + 4x2 - 4dx= 351 + 4x2 - 4dx= x + 42 × 2logex - 2x + 235= 5 + loge5 - 25 + 2 - 3 - loge3 - 23 + 2= 2 + loge37 - loge15= 2 + loge37 × 51= 2 +loge157


Advertisement
86.

0dxx +x2 +13 is equal to

  • 38

  • 18

  • - 38

  • None of these


87.

A common tangent to 9x2 - 16y2 = 144 and x2 + y2 = 9 is

  • y = 37x + 157

  • y = 327x + 157

  • y = 237x + 157

  • None of these


88.

The differential equation of all parabolas whose axes are parallel to y-axis is

  • d3ydx3 = 0

  • d2xdy2 = 0

  • d3ydx3+ d2xdy2 = 0

  • d2ydx2 + 2dydx = 0


Advertisement
89.

The locus of a point P which moves such that 2PA = 3PB, where A(0, 0) and B(4,- 3) are points, is

  • 5x2 - 5y2 - 72x + 54y + 225 = 0

  • 5x2 + 5y2 - 72x + 54y + 225 = 0

  • 5x2 + 5y2 + 72x - 54y + 225 = 0

  • 5x2 + 5y2 - 72x - 54y - 225 = 0


90.

The points P is equidistant from A(1, 3), B (- 3, 5) and C(5, - 1), then PA is equal to

  • 5

  • 55

  • 25

  • 510


Advertisement