The general solution of the differential equationd2ydx2 +&nb

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

If  and , then the value of cosyx is equal to :

  • x

  • 1x

  • logx

  • ex


32.

The differential equation of the system of all circles of radius r in the xy plane is :

  • 1 + dydx32 = r2d2ydx22

  • 1 + dydx32 = r2d2ydx23

  • 1 + dydx23 = r2d2ydx22

  • 1 + dydx23 = r2d2ydx23


Advertisement

33.

The general solution of the differential equation

d2ydx2 + 2dydx + y = 2e3x is given by

  • y = c1 + c2xex + e3x8

  • y = c1 + c2xe- x + e- 3x8

  • y = c1 + c2xe- x + e3x8

  • y = c1 + c2xex + e- 3x8


C.

y = c1 + c2xe- x + e3x8

The equation can be written as

(D2 + 2D + 1)y = 2e3x, where ddx = D

Here, F(D) = D2 + 2D + 1 and Q = 2e3x

The auxillary equation is

m2 + 2m + 1 = 0  (m + 1)2 = 0

             m = - 1, - 1

 The CF = c1 + c2xe- x

and PI = 1FD2e3x = 2 . 1D2 + 2D + 1 . e3x           = 2 . e3x9 + 6 + 1 = e3x8

Hence, the complete solution is

     y = CF + PI

 y = c1 + c2xe- x + e3x8


Advertisement
34.

The solution of the differential ydx + (x - y3)dy = 0 is:

  • xy = 13y3 + c

  • xy = y4 + c

  • y4 = 4xy + c

  • 4y = y3 + c


Advertisement
35.

If the probability density function of a random variable X is f(x) = x2 in 0  x  2, then PX > 1.5 | x > 1 is equal to :

  • 716

  • 34

  • 712

  • 2164


36.

If X follows a binomial distribution with parameters n = 100 and p = 13 then P(X = r) 3 is maximum when r is equal to

  • 16

  • 32

  • 33

  • none of these


37.

If b is a unit vector, then a . bb + ba × b is :

  • a2 b

  • a . ba

  • a

  • b


38.

If θ is the angle between the lines AB and AC where A, B and C are the three points with coordinates (1, 2, - 1), (2, 0, 3), (3, - 1, 2) respectively, then 462 cosθ is equal to

  • 20

  • 10

  • 30

  • 40


Advertisement
39.

Let the pairs a, b and c, d each determine a plane. Then the planes are parallel, if :

  • a × c and b × d = 0

  • a × c . b × d = 0

  • a × b × c × d = 0

  • a × b . c × d = 0


40.

The area of a parallelogram with 3i^ + j^ - 2k^ and i^ - 3j^ + 4k^ as diagonal is :

  • 72

  • 73

  • 74

  • 75


Advertisement