Let a→ = i^ - j^, b→ 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

If xx + 1dx = Ax + Btan-1x + c, then :

  • A = 1, B = 1

  • A = 1, B = 2

  • A = 2, B = 2

  • A = 2, B = - 2


22.

x3sintan-1x41 + x8dx is equal to :

  • 14costan-1x4 + c

  • 14sintan-1x4 + c

  • - 14costan-1x4 + c

  • 14sec-1tan-1x4 + c


23.

In0π4tannxdx, then limnnIn + In +2 equals :

  • 12

  • 1

  • zero


24.

A bag contains 3 black, 3 white and 2 red balls. One by one, three balls are drawn without replacement. The probabilitythat the third ball is red is equal to :

  • 256

  • 356

  • 156

  • 1456


Advertisement
25.

The angle between the line x - 32 = y - 11 = x + 4- 2 and the plane, x + y + z + 5 = 0 is :

  • sin-123

  • sin-113

  • π4

  • sin-1133


26.

A vector perpendicular to 2i^ + j^ + k^ and coplanar with i^ + 2j^ + k^ and i^ + j^ + 2k^ is :

  • 5j^ - k^

  • i^ + 7j^ - k^

  • 5j^ + k^

  • 2i^ - j^ - k^


27.

If a = 2i^ - 3j^ + pk^ and a × b = a = 4i^ + 2j^ - 2k^, then p is :

  • 0

  • - 1

  • 1

  • 2


Advertisement

28.

Let a = i^ - j^, b = j^ - k^, c = k^ - i^. If d is a unit vector such that a . d = 0 = b c d, then d is (are) :

  • ± i^ + j^ - k^3

  • ± i^ + j^ - 2k^6

  • ± i^ + j^ + k^3

  • ± k^


B.

± i^ + j^ - 2k^6

Let d = d1i^ + d2j^ + d3k^a . d = d1 - d2 = 0  d1 = d2  ...iAlso, d is a unit vector d12 + d22 + d32 = 1                ...iiib c d = 0  01- 1- 101d1d2d3 = 0 - 1- d3 - d1 - 1- d2 = 0 d1 + d2 + d3 = 0  2d1 + d3 = 0                    d3 = - 2d1            ...iiiUsing Eqs. (iii) and (i) in Eq. (ii) we getd12 + d12 + 4d12 = 1 6d12 = 1  d1 = ± 16   d2 = ± 16and d3 =  26 Required vector is± 16i^ + j^ - 2k^


Advertisement
Advertisement
29.

If xfxdx = fx2, then f(x) is equal to :

  • ex

  • e- x

  • log(x)

  • ex22


30.

02x2dx is :

  • 2 - 2

  • 2 + 2

  • 2 - 1

  • - 2 - 3 + 5


Advertisement