The value of determinant, 13 + 325515 + 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

The minimum value of 2cosθ + 1sinθ + 2tanθ in the interval 0, π2 is :

  • 2 + 2

  • 32

  • 23

  • 3 + 2


12.

Let x1 and x2 be solutions of the equation sin-1x2 - 3x + 52 = π6. Then, the value of x12 + x22 is :

  • 4

  • 5

  • 52

  • 6


13.

If the derivative of the function f(x) is every where continuous and is given by

fx = bx2 + ax + 4; x  - 1ax2 + b;          x < - 1, then :

  • a = 2, b = - 3

  • a = 3, b = 2

  • a = - 2, b = - 3

  • a = - 3, b = - 2


14.

If f(x + y) = f(x)f(y) for all real x and y, f(6) = 3 and f'(0) = 10, then f'(6) is :

  • 30

  • 13

  • 10

  • 0


Advertisement
Advertisement

15.

The value of determinant, 13 + 325515 + 265103 + 65155 is :

  • 56 - 5

  • 536 - 5

  • 56 - 3

  • 27 - 5


B.

536 - 5

13 + 325515 + 265103 + 65155= 132552651065155 + 3255155103155= 13 . 5 . 5121252535 + 3 . 5 . 5121552335= 0 + 53- 121052035= 536 - 5


Advertisement
16.

Derivative of sec-111 - 2x2 w . r. t sin-13x - 4x3 is :

  • 14

  • 32

  • 1

  • 23


17.

Let D = {1, 2, 35, 6, 10, 15, 30}. Define the operattons '+', ' . ' and ' ' ' on D as follows a + b = LCM(a, b), a . b = GCD(a, b) and a' = 30a Then (15' + 6) · 10 1s equal to :

  • 1

  • 2

  • 3

  • 5


18.

a +xbcab +ycabc +z is equal to :

  • abc1 + xa + yb + zc

  • abc1 + ax + by + cz

  • xyz1 + ax + by + cz

  • xyz1 + xa + yb + zc


Advertisement
19.

The solution of the differential equation xdydx + 2y = x2 is :

  • y = x2 + c4x2

  • y = x24 + c

  • y = x2 + cx2

  • y = x4 + c4x2


20.

y = - A cos(5x) + B sin(5x) satisfies the differential equation :

  • d2ydx2 + 10dydx + 25y = 0

  • d2ydx2 - 10dydx + 25y = 0

  • d2ydx2 - 25y = 0

  • d2ydx2 + 25y = 0


Advertisement