The maximum value of 3 cosθ + 4 si

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

1.

The maximum value of 3 cosθ + 4 sinθ is

  • 3

  • 4

  • 5

  • None of these


C.

5

Let z = 3 cosθ + 4 sinθOn differentiating w.r.t. θ, we get dz = - 3 sinθ + 4 cosθFor maximum or minimum put dz = 0 - 3 sinθ + 4 cosθ = 0                           tanθ = 43Again differentiating, we getd2z2 = - 3 cosθ - 4 sinθ        = - 3 . 35 - 4 . 45        = 255 = 5


Advertisement
2.

1- 1221- 1 is equal to

  • 2- 1- 2

  • 21- 1- 2- 1142- 2

  • [- 1]

  • Not defined


3.

The domain of the function sin-1log2x22 is

  • [- 1, 2] - {0}

  • [- 2, 2] - (- 1, 1)

  • [- 2, 2] - {0}

  • [1, 2]


4.

Function f(x) = x - 1,   x <22x - 3, x  2 is a continuous function

  • for x = 2 only

  • for all real values of x such that x  2

  • for all real values of x

  • for all integral values of x only


Advertisement
5.

Differential coefficient of secx is

  • 14xsecxsinx

  • 14xsecx32 . sinx

  • 12xsecx . sinx

  • 12xsecx32 . sinx


6.

The function x5 - 5x4 + 5x3 - 1 is

  • neither maximum nor minimum at x = 0

  • maximum at x = 0

  • maximum at x = 1 and minimum at x = 3

  • minimum at x = 0


7.

If the radius of a circle be increasing at a uniform rate of 2 cm/s. The area of increasing of area of circle, at the instant when the radius is 20 cm, is

  • 70 π cm2/s

  • 70 cm2/s

  • 80 π cm2/s

  • 80 cm2/s


8.

The equation of normal at the point (0, 3) of the ellipse 9x2 + 5y2 = 45 is

  • x-axis

  • y-axis

  • y + 3 = 0

  • y - 3 = 0


Advertisement
9.

Let the functions f, g, h are defined from the set of real numbers R to R such that

fx = x2 - 1, gx = x2 + 1 andhx = 0, if x < 0x, if x  0

then ho(fog)(x) is defined by

  • x

  • x2

  • 0

  • None of these


10.

3tan-1a is equal to

  • tan-13a + a31 + 3a2

  • tan-13a - a31 + 3a2

  • tan-13a + a31 - 3a2

  • tan-13a - a31 - 3a2


Advertisement