The length of the subtangent to the curve x2y2 = a4 at (- a, a)

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

If  is

  • y + 1x - 1

  • x - 1y - 1

  • x - 1y + 1


12.

If y = cos23x2 - sin23x2, then d2ydx2 is

  • - 31 - y2

  • 9y

  • - 9y

  • 31 - y2


13.

The point on the curve y2 = x the tangent at which makes an angle 45° with X-axis ts

  • 14, 12

  • 12, 14

  • 12, - 12

  • 12, 12


Advertisement

14.

The length of the subtangent to the curve x2y2 = a4 at (- a, a)

  • a2

  • 2a

  • a

  • a3


C.

a

Given curve, x2y2 = a4 c y2 = a4x2On differentiating, we get  2ydydx = - 2a4x3 dydx = -a4x3yat - a, a, dydx = - a4- a3 . a = 1Now, length of subtangent to the grven curve at (a, a) isydydx = a1 = 1


Advertisement
Advertisement
15.

If a = 2i^ +3j^ - k^, b = i^ +2j^ - 5k^, c = 3i^ + 5j^ - k^, then a vector perpendicular to a and in the plane containing b and c is

  • - 17i^ + 21j^ - k^

  • 17i^ + 21j^ - 123k^

  • - 17i^ - 21j^ + 97k^

  • - 17i^ - 21j^ -97 k^


16.

OA and BO are two vectors of magnitudes 5 and 6 respectively. If BOA = 60°, then OA · OB is equal to

  • 0

  • 15

  • - 15

  • 153


17.

A vector perpendicularto the plane containing the points A (1, - 1, 2), B(2, 0, - 1), C(0, 2, 1) is

  • 4i^ + 8j^ - 4k^

  • 8i^ + 4j^ + 4k^

  • 3i^ + j^ + 2k^

  • i^ + j^ - k^


18.

If a and b are vectors such that a + b = a - b, then the angle between a and b is

  • 120°

  • 60°

  • 90°

  • 30°


Advertisement
19.

The value of the integral 0π2sin100x - cos100xdx is

  • 1100

  • 100!100100

  • π100

  • 0


20.

If k01x . f3xdx = 03t . ftdt, then the value of k is

  • 9

  • 3

  • 19

  • 13


Advertisement