Given that a, b ∈ 0, 1, 2, . . . , 9 witha + b ≠ 0 and that a + b10x = ab + b100y = 1000. Then,1x - 1y is equal to
1
12
13
14
If x = 127 + 17, then x2 - 1x - x2 - 1 is equal to
2
3
4
For any integer n ≥ 1, the sum ∑k = 1nkk + 2 is equal to
nn + 1n + 26
nn + 12n + 16
nn + 12n + 76
nn + 12n + 96
9 balls are to be placed in 9 boxes and 5 of the balls cannot fit into 3 small boxes. The number of ways of arranging one ball in each of the boxes is
18720
18270
17280
12780
If Prn = 30240 and Crn = 252, then the ordered pair n, r is equal to
(12, 6)
(10, 5)
(9, 4)
(16, 7)
If 1 + x + x2 + x35 = ∑k = 015akxk, then ∑a2k = 07k = 0
128
256
512
1024
If α = 52 ! 3 + 5 . 73 ! 32 + 5 . 7. 94! 33 + . . . , thenα2 + 4α is equal to
21
23
25
27
B.
Given that, α = 52 ! 3 + 5 . 73 ! 32 +5 . 7 . 94 ! 33 + . . . . . .iWe know that,1 + xn = 1 + nx1! + nn - 12!x2 + nn - 1n - 23!x3 + . . . . . .ii On compairing eqs. i and ii, with respect to factorialnn - 1x2 = 53 . . . iiinn - 1n - 2x3 = 5 . 732 . . . ivandnn - 1n - 2n - 3x4 = 5 . 7 . 933 . . . vOn dividing eq. iv by iii and eq. v by iv, we getn - 2x = 73 . . . viand n - 3x = 3 . . . viiAgain, dividing eq. vi by vii, we getn - 2 n - 3 = 79
⇒9n - 18 = 7n - 21⇒2n = - 3⇒ n = - 32On putting the value of n in eq vi, we get- 32 - 2x = 73 ⇒ x = - 23∴From eq. ii1 - 23- 32 = 1 + 1 + 52 ! 3 + 5 . 73 ! 32 + . . .⇒ 332 - 2 = 52 ! 3 + 5 . 73 ! 32 + . . . ⇒ α = 332 - 2 from eq. iNow, α2 + 4α = 332 - 22 + 4332 - 2 = 27 + 4 - 4 332 + 4 . 332 - 8 = 23
If x2 + x + 1x2 + 2x + 1 = A + Bx + 1 + Cx + 12, then A - B is equal to
4C
4C + 1
3C
2C
∑k = 1∞1k!∑n = 1k2n - 1 is equal to
e
e2 + e
e2
e2 - e
11 . 3 + 12 . 5 + 13 . 7 +14 . 9 + . . . = ?
2loge2 - 2
2 - loge2
2loge4
loge4