The solution of the differential equation dydx = 1

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

61.

The solution of the differential equation dydx = 1x + y2 is

  • y = - x2 - 2x - 2 + cex

  • y = x2 + 2x + 2 - cex

  • x = - y2 - 2y + 2 - cey

  • x = - y2 - 2y - 2 + cey


D.

x = - y2 - 2y - 2 + cey

Given differential equation is

dydx = 1x + y2 dxdy - x = y2Here, P = - 1, Q = y2IF = e- 1dy = e- y Solution isxe- y = e- yy2dy         = - e- yy2 + 2- e- yy + e- ydy + c         = - e- yy2 + 2- e- y - e- y + c xe- y = e- y- y2 - 2y - 2 + c       x = - y2 - 2y - 2 + cey


Advertisement
62.

The solution of the equation 3 + 22x2 - 8 + 3 + 228 - x2 = 6 are

  • 3 ± 22

  • ± 1

  • ± 33, ± 22

  • ± 3, ± 7


63.

Let Tn denote the number of triangles which can equal to be formed by using the vertices of a regular polygon of n sides. If Tn + 1 - Tn = 28, then n equals

  • 4

  • 5

  • 6

  • 8


Advertisement