JEE Mathematics Solved Question Paper 2009 | Previous Year Papers | Zigya

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
1.

If A = 324121326 and Aij are the cofactors of aij then a11A11 + a12A12 + a13A13 is equal to

  • 8

  • 6

  • 4

  • 0


2.

A = cosθ- sinθsinθcosθ and AB = BA = I, then B is equal to

  • - cosθsinθsinθcosθ

  • cosθsinθ- sinθcosθ

  • - sinθcosθcosθsinθ

  • sinθ- cosθ- cosθsinθ


3.

The equation of motion of a particle moving along a straight line is s = 2t3 - 9t2 + 12t, where the units of s and t are centimetre and second. The acceleration of the particle will be zero after

  • 32s

  • 23s

  • 12s

  • 1 s


4.

The equation of the tangent to the curve y = 4xex at - 1, - 4e

  • y = - 1

  • y = - 4e

  • x = - 1

  • x = - 4e


Advertisement
5.

Given p = 3i^ +2j^ + 4k^, a = i^ +j^c = i^ +k^ and p = xa + yb + zc then x, y, z are respectively

  • 32, 12, 52

  • 12, 32, 52

  • 52, 32, 12

  • 12, 52, 32


6.

A point on XOZ - plane divides the join of (5, - 3, - 2) and (1, 2, - 2) at

  • 135, 0, - 2

  • 135, 0, 2

  • (5, 0, 2)

  • (5, 0, - 2)


7.

If the line OR makes angles θ1, θ2, θ3, with the planes XOY, YOZ, ZOX respectively, then cos2θ1 + cos2θ2 + cos2θ3, is equal to

  • 1

  • 2

  • 3

  • 4


8.

Joint equation of pair of lines through (3, - 2) and parallel to x2 - 4xy + 3y2 = 0 is

  • x2 + 3y2 - 4xy - 14x + 24y + 45 = 0

  • x2 + 3y2 + 4xy - 14x + 24y + 45 = 0

  • x2 + 3y2 + 4xy - 14x + 24y - 45 = 0

  • x2 + 3y2 + 4xy - 14x - 24y - 45 = 0


Advertisement
9.

Area bounded between the curve x2 = y and the line y = 4x is

  • 323 sq unit

  • 13 sq unit

  • 83 sq unit

  • 163 sq unit

     


10.

Which of the following is true ?

  • 01exdx = e

  • 012xdx = log2

  • 01xdx = 23

  • 01xdx = 13


Advertisement