If f(x) = xpcos1x, x ≠ 00   

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

The length of the normal to the curve x = aθ + sinθ, y =  a1 - cosθ at θ = π2 is

  • 2a

  • a2

  • a2

  • 2a


2.

The maximum value of logxx is

  • e

  • 2e

  • 1e

  • 2e


3.

In the interval - π4, π4, the number of real solutions of the equations sinxcosxcosxcosxsinxcosxcosxcosxsinx = 0 is

  • 0

  • 2

  • 1

  • 3


4.

If f(x) = xsin1x, x  0k           , x = 0 is continuous at x = 0, then the value of k will be

  • 1

  • - 1

  • 0

  • None of these


Advertisement
5.

If cotcos-1x = sectan-1ab2 - a2, then x is equal to

  • b2b2 - a2

  • a2b2 - a2

  • 2b2 - a2a

  • 2b2 - a2b


6.

Number of solutions ofthe equation

tan-112x + 1 + tan-114x + 1 = tan-12x2 is

  • 1

  • 2

  • 3

  • 4


7.

If f(x) = 4x4x + 2, then f197 + f297 + ... + f9697 is equal to

  • 1

  • 48

  • - 48

  • - 1


Advertisement

8.

If f(x) = xpcos1x, x  00             , x = 0 is differentiable at x = 0, then

  • p < 0

  • 0 < p < 1

  • p = 1

  • p > 1


D.

p > 1

Given, fx = xpcos1x, x  00             , x = 0Since, f(x) is differentiable at x = 0, therefore it is continuous at x = 0. limx0fx = f0 = 0 limx0xpcos1x = 0  p > 0As f(x) is differentiable at x = 0. limx0fx - f0x - 0 exists finitely limx0xpcos1x - 0x exists finitely limx0xp - 1cos1x - 0 exists finitely p - 1 > 0  p > 1


Advertisement
Advertisement
9.

If xx21 +x3yy21 + y3zz21 + z3 = 0 and x, y, z are all distinct, then xyz is equal to

  • - 1

  • 1

  • 0

  • 3


10.

If A = 1111, then A100 is equal to

  • 100 A

  • 299 A

  • 2100 A

  • 99 A


Advertisement