The degree of the differential equation x = 1 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

61.

If the displacement, velocity and acceleration of a particle at time t be x, v and f respectively, then which one is true ?

  • f = v3d2tdx2

  • f = - v3d2tdx2

  • f = v2d2tdx2

  • f = - v2d2tdx2


62.

The displacement x of a particle at time t is given by x = At2 + Bt + C where A, B, C are constants and v is velocity of a particle, then the value of 4Ax - v2 is

  • 4AC + B2

  • 4AC - B2

  • 2AC - B2

  • 2AC + B2


63.

The displacement of a particle at time t is x,  where x = t4 - kt3. If the velocity of the particle at time t = 2 is minimum, then 

  • k = 4

  • k = - 4

  • k = 8

  • k = - 8


64.

logx3xdx is equal to

  • 13logx2 + c

  • 23logx2 + c

  • 23logx2 + c

  • 13logx2 + c


Advertisement
65.

ex2x - 2x2dx

  • exx + c

  • ex2x2 + c

  • 2exx + c

  • 2exx2 + c


66.

The value of the integral dxex + e- x2

  • 12e2x +1 + c

  • 12e- 2x +1 + c

  • - 12e2x +1- 1 + c

  • 14e2x -1 + c


67.

1 + cosxdx is equal to

  • 22cosx2 + c

  • 22sinx2 + c

  • 2cosx2 + c

  • 2sinx2 + c


68.

The general solution of the differential equation

100d2ydx2 - 20dydx + y = 0 is

  • y = (c1 + c2x)ex

  • y = (c1 + c2x)ex

  • y = c1 + c2xex10

  • y = c1ex + c2e- x


Advertisement
69.

If y'' - 3y' + 2y = 0 where y(0) = 1, y'(0) = 0, then the value of y at x = log(2) is

  • 1

  • - 1

  • 2

  • 0


Advertisement

70.

The degree of the differential equation x = 1 + dydx + 12!dydx2 + 13!dydx3 + ...

  • 3

  • 2

  • 1

  • not defined


C.

1

x = 1 + dydx + 12!dydx2 + 13!dydx3 + ...          ex = 1 + x + x22! + x33! + x44! + ... x = edydx logex = dydx[After taking log on both sides]Hence, degree of differential equation is 1


Advertisement
Advertisement