The angle between the curves, y = x and y2 - x = 0 at the point (

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

The vector equation of the straight line  is

  • r = i^ - j^ + 3k^ + λ3i^ - 2j^ - k^

  • r = 3i^ - 2j^ - k^ + λi^ - j^ + 3k^

  • r = 3i^ + 2j^ - k^ + λi^ - j^ + 3k^


42.

The probability distribution of a random variable X is given as
x - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
P(X = x) p 2p 3p 4p 5p 7p 8p 9p 10p 11p 12p

Then, the value of p is

  • 172

  • 373

  • 572

  • 174


Advertisement

43.

The angle between the curves, y = x and y2 - x = 0 at the point (1, 1) is

  • π2

  • tan-143

  • π3

  • tan-134


D.

tan-134

Given curve are

             y = x2       ...(i)

and y2 - x = 0        ...(ii)

From Eq. (i),

               dydx = 2x dydx1, 1 = 2 = m1From Eq. (ii),  2y dydx - 1 = 0          dydx = 12y dydx1, 1 = 12 = m2Let θ be the angle between given curve. Then,tanθ = m1 - m21 + m1m2          = 2 - 121 + 2 . 12 = 322 = 34  θ = tan-134

 


Advertisement
44.

If x + 22x2 + 6x + 5dx = P 4x + 62x2 + 6x + 5dx + 12dx2x2 + 6x + 5, then the values of P is

  • 13

  • 12

  • 14

  • 2


Advertisement
45.

x + 1x + 27x + 3dx is equal to

  • x + 21010 - x + 288 + c

  • x + 1102 - x + 288 - x + 322+ c

  • x + 21010 + c

  • x + 122 + x + 288 + x + 322 + c


46.

x2 + 1x + 1dx is equal to

  • x + 1727 - 2x + 1525 + 2x + 1323 + c

  • 2x + 1727 - 2x + 1525 + 2x + 1323 + c

  • x + 1727 - 2x + 1525 + c

  • x + 172 + x + 152 + x + 132 + c


47.

1 + xx + e- xdx is equal to

  • logx - e- x

  • logx + e- x

  • log1 + xex + c

  • 1 + xex2 + c


48.

logx + 1 + x21 + x2dx is equal to

  • logx + 1 + x22 + c

  • xlogx + 1 + x2 + c

  • 12logx + 1 + x2 + c

  • x2logx + 1 + x2 + c


Advertisement
49.

dx1 - e2x is equal to

  • loge- x + e- 2x - 1 + c

  • logex + e2x - 1 + c

  • - loge- x + e- 2x - 1 + c

  • - loge- 2x + e- 2x - 1 + c


50.

cosx + xsinxx2 cosxdx is equal to

  • logsinx1 + cosx + c

  • logsinxx + cosx + c

  • log2sinxx + cosx + c

  • logxx + cosx + c


Advertisement