The vector equation of the straight line is
r→ = i^ - j^ + 3k^ + λ3i^ - 2j^ - k^
r→ = 3i^ - 2j^ - k^ + λi^ - j^ + 3k^
r→ = 3i^ + 2j^ - k^ + λi^ - j^ + 3k^
The probability distribution of a random variable X is given as
Then, the value of p is
172
373
572
174
The angle between the curves, y = x and y2 - x = 0 at the point (1, 1) is
π2
tan-143
π3
tan-134
If ∫x + 22x2 + 6x + 5dx = P ∫4x + 62x2 + 6x + 5dx + 12∫dx2x2 + 6x + 5, then the values of P is
13
12
14
2
∫x + 1x + 27x + 3dx is equal to
x + 21010 - x + 288 + c
x + 1102 - x + 288 - x + 322+ c
x + 21010 + c
x + 122 + x + 288 + x + 322 + c
∫x2 + 1x + 1dx is equal to
x + 1727 - 2x + 1525 + 2x + 1323 + c
2x + 1727 - 2x + 1525 + 2x + 1323 + c
x + 1727 - 2x + 1525 + c
x + 172 + x + 152 + x + 132 + c
∫1 + xx + e- xdx is equal to
logx - e- x
logx + e- x
log1 + xex + c
1 + xex2 + c
∫logx + 1 + x21 + x2dx is equal to
logx + 1 + x22 + c
xlogx + 1 + x2 + c
12logx + 1 + x2 + c
x2logx + 1 + x2 + c
∫dx1 - e2x is equal to
loge- x + e- 2x - 1 + c
logex + e2x - 1 + c
- loge- x + e- 2x - 1 + c
- loge- 2x + e- 2x - 1 + c
∫cosx + xsinxx2 cosxdx is equal to
logsinx1 + cosx + c
logsinxx + cosx + c
log2sinxx + cosx + c
logxx + cosx + c
D.
cosx + xsinxx2 cosx = x + cosx - x + xsinxxx + cosx = 1x - 1 - sinxx + cosx∴ ∫cosx + xsinxx2 cosxdx = ∫1x - 1 - sinxx + cosxdx = logx - logx + cosx + c = logxx + cosx + c