The area of the plane region bounded by the curve x = y2 - 2

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

The integral 012sin-1x2xdx equals

  • 0π6xdxtanx

  • 0π62tanxdx

  • 0π22xdxtanx

  • 0π62xsinxdx


Advertisement

52.

The area of the plane region bounded by the curve x = y- 2 and the· line y = - x is (in square units)

  • 133

  • 25

  • 92

  • 52


C.

92

Given curves x = y2 - 2 and y = x

Thus, interection point are

(- 1, 1) and (2, - 2)

We are to find the area of shaded part

Area of ABC = - 2- 1x + 2dx

    = 23x + 232- 2- 1 = 23 sq unit

Area of BCO = - 10 - xdx = - x22- 10

                     = 12 sq unit

Area of ADO

= - 20x + 2dx = 23x + 232- 20= 432

Area of ODE = area of ODEF - area of OPE

02x + 2dx - 02- xdx= 23x + 23202 - - x2202= 163 - 423 - 2

   [  neglecting the negative sign]

 Required area

23 + 12 + 423 + 163 - 423 - 2

23 + 12 + 163 - 2

276

92 sq unit


Advertisement
53.

If 0af2a - xdx = m and 0afxdx = n, then 02afxdx is equal to

  • 2m + n

  • m + 2n

  • m - n

  • m + n


54.

- 100100fxdx is equal to

  • - 100100fx2dx

  • - 100100f- x2dx

  • - 100100f1xdx

  • - 100100f- xdx


Advertisement
55.

- 11ex3 + e- x3ex - e- xdx is equal to

  • e22 - 2e

  • e2 - 2e

  • 2(e2 - e)

  • 0


56.

The family of curves y = easin(x), where a is anarbitrary constant, is represented by thedifferential equation 

  • logy = tanxdydx

  • ylogy = tanxdydx

  • ylogy = sinxdydx

  • logy = cosxdydx


57.

The integrating factor of x dydx + 1 + x y = x is

  • x

  • 2x

  • exlog(x)

  • xex


58.

The solution of the differential equation dydx + 1 = ex + y is

  • x + ex + y = c

  • x - ex + y = c

  • x + e- (x + y) = c

  • x - e- (x + y) = c


Advertisement
59.

The degree and order of the differential equation y = px + a2p2 + b23, where p = dydx, are respectively.

  • 3, 1

  • 1, 3

  • 1, 1

  • 3, 3


60.

If the distance between (2, 3) and (- 5, 2) is equal to the distance between (x, 2) and (1, 3), then the values of x are

  • - 6, 8

  • 6, 8

  • - 8, 6

  • - 7, 7


Advertisement