The family of curves y = easin(x), where a is anarbitrary constan

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

The integral 012sin-1x2xdx equals

  • 0π6xdxtanx

  • 0π62tanxdx

  • 0π22xdxtanx

  • 0π62xsinxdx


52.

The area of the plane region bounded by the curve x = y- 2 and the· line y = - x is (in square units)

  • 133

  • 25

  • 92

  • 52


53.

If 0af2a - xdx = m and 0afxdx = n, then 02afxdx is equal to

  • 2m + n

  • m + 2n

  • m - n

  • m + n


54.

- 100100fxdx is equal to

  • - 100100fx2dx

  • - 100100f- x2dx

  • - 100100f1xdx

  • - 100100f- xdx


Advertisement
55.

- 11ex3 + e- x3ex - e- xdx is equal to

  • e22 - 2e

  • e2 - 2e

  • 2(e2 - e)

  • 0


Advertisement

56.

The family of curves y = easin(x), where a is anarbitrary constant, is represented by thedifferential equation 

  • logy = tanxdydx

  • ylogy = tanxdydx

  • ylogy = sinxdydx

  • logy = cosxdydx


B.

ylogy = tanxdydx

Given curve is

y = easin(x)            ...(i)

Taking log on both sides, we get

log(y) = a sin(x)    ...(ii)

Differentiating w.r.t. x, we get

1y dydx = a cosx   ...(iii)

Dividing Eq. (iii) by Eq. (ii), we get

       1y dydxlogy = a cosxa sinx        dydx = y logy cotx x logy = tanx dydx


Advertisement
57.

The integrating factor of x dydx + 1 + x y = x is

  • x

  • 2x

  • exlog(x)

  • xex


58.

The solution of the differential equation dydx + 1 = ex + y is

  • x + ex + y = c

  • x - ex + y = c

  • x + e- (x + y) = c

  • x - e- (x + y) = c


Advertisement
59.

The degree and order of the differential equation y = px + a2p2 + b23, where p = dydx, are respectively.

  • 3, 1

  • 1, 3

  • 1, 1

  • 3, 3


60.

If the distance between (2, 3) and (- 5, 2) is equal to the distance between (x, 2) and (1, 3), then the values of x are

  • - 6, 8

  • 6, 8

  • - 8, 6

  • - 7, 7


Advertisement