If g is the inverse of f and f'(x) = 11 + x2, then g'(x) is equal to
1 + [g(x)]2
- 11 + [g(x)]2
121 + x2
None of these
If ∫01tan-1xdx = p, then the value of ∫01tan-11 - x1 + xdx is
π4 + p
π4 - p
1 + p
1 - p
If f(x) = x , g(x) = sin(x), then ∫fgxdx is equal to
sin(x) + c
- cos(x) + c
x22 + c
x sin(x) + c
The value of ∫0π2logcscxdx is
π2log2
πlog2
- π2log2
2πlog2
If a→, b→, c→ are three non-coplanar vectors and p→, q→, r→ are defined by the relations
p→ = b→ × c→a→ b→ c→, q→ = c→ × a→a→ b→ c→ and r→ = b→ × a→a→ b→ c→
then a→ . p→ + b→ . q→ + c→ . r→ is equl to
0
1
2
3
B.
a→ . p→ + b→ . q→ + c→ . r→= a→ . b→ × c→a→ b→ c→+ b→ . c→ × a→a→ b→ c→ + c→ . b→ × a→a→ b→ c→= 1 + 1 - 1 = 1
The volume of a parallelopiped whose coterminous edges are 2a→, 2b→, 2c→ is
2a→ b→ c→
4a→ b→ c→
8a→ b→ c→
a→ b→ c→
The volume of the solid formed by rotating the area enclosed between the curve y2 = 4x, x = 4 and x = 5 about x-axis is (in cubic units)
18π
36π
9π
24π
∫etanxsec2x + sec3xsinxdx is equal to
secxetanx + c
tanxetanx + c
etanx + tanx + c
1 + tanxetanx + c
∫116x2 + 9dx is equal to
13tan-14x3 + c
14tan-14x3 + c
112tan-14x3 + c
112tan-13x4 + c
The value of ∫4711 - x2x2 + 11 - x2dx is
1/2
3/2