The differential equation of the family of curve y = Ae3x + Be5x,

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

Let f(x) = . Then, f'(x) is equal to

  • g[v(x)] - g[u(x)]

  • g'[v(x)] - g'[u(x)]

  • g[v(x)] v'(x) - g[u(x)] u'(x)

  • None of the above


42.

The value of  is

  • 1

  • 2

  • 0

  • 3


43.

sinx + cosx1 + sin2xdx equals

  • logsinx + cosx

  • x

  • logsincosx

  • logx


44.

Area common to the circle x2 + y2 = 64 and the parabola y2 = 12x is equal to

  • 1634π + 3

  • 1638π - 3

  • 1634π - 3

  • None of these


Advertisement
45.

Area bounded by the curve y = x3, the x-axis and the ordinates x = - 2 and x = 1 is

  • - 9

  • - 154

  • 154

  • 174


46.

Differential equation of the family of curve y = a cos(µx) + b sin(µx), where a, b are arbitrary constants, is given by

  • d2ydx2 + μy = 0

  • d2ydx2 + μ2y = 0

  • d2ydx2 - μ2y = 0

  • None of these


47.

The differential equation of all circles which pass through the origin and whose centres lie on y-axis is

  • x2 - y2dydx - 2xy = 0

  • x2 - y2dydx + 2xy = 0

  • x2 - y2dydx - xy = 0

  • x2 - y2dydx + xy = 0


Advertisement

48.

The differential equation of the family of curve y = Ae3x + Be5x, where A, B are arbitrary constants, is

  • d2ydx2 + 8dydx + 15 = 0

  • d2ydx2 - 8dydx + 15 = 0

  • d2ydx2 - dydx + y = 0

  • None of these


B.

d2ydx2 - 8dydx + 15 = 0

Let      y = Ae3x + Be5x   dydx = 3Ae3x + 5Be5x d2ydx2 = 9Ae3x + 25Be5xd2ydx2 + 15y = 9Ae3x + 25Be5x + 15Ae3x + 15Be5x                    = 24Ae3x + 40Be5x                    = 83Ae3x + 5Be5x = 8dydx d2ydx2 - 8dydx + 15 = 0


Advertisement
Advertisement
49.

Solution of the differential equation xdydx = y + x2 + y2 is

  • y - x2 + y2 = cx2

  • y + x2 + y2 = cx2

  • x + x2 + y2 = cy2

  • x - x2 + y2 = cy2


50.

Using trapezoidal rule and taking n = 4, the value of 02dx1 + x will be

  • 1.1167

  • 1.1176

  • 1.118

  • None of these


Advertisement