Find the equation to the parabola, whose axis parallel to they-ax

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

11.

  • - 8, 152

  • 8, - 152

  • - 8, - 152


12.

The equation of the circle concentric with the circle x2 + y2 - 6x + 12y + 15 = 0 and of double its area is

  • x2 + y2 - 6x +12y - 15 = 0

  • x2 + y2 - 6x +12y - 30 = 0

  • x2 + y2 - 6x +12y - 25 = 0

  • x2 + y2 - 6x +12y - 20 = 0


13.

If the circle x2 + y2 + 2x + 3y + 1 = 0 cuts another circle x2 + y+ 4x + 3y + 2 = 0 in A and B, then the equation of the circle with AB as a diameter is

  • x2 + y2  + x + 3y + 1 = 0

  • 2x2 + 2y2  + 2x + 6y + 1 = 0

  • x2 + y2  + x + 6y + 1 = 0

  • 2x2 + 2y2  + x + 3y + 1 = 0


14.

The equation of the hyperbola which passes through the point (2, 3) and has the asymptotes 4x + 3y - 7 = 0 and x - 2y - 1 = 0 is

  • 4x2 + 5xy - 6y2 - 11x + 11y + 50 = 0

  • 4x2 + 5xy - 6y2 - 11x + 11y - 43 = 0

  • 4x2 - 5xy - 6y2 - 11x + 11y + 57 = 0

  • x2 - 5xy - y2 - 11x + 11y - 43 = 0


Advertisement
15.

The product of the perpendicular distances from any point on the hyperbola x2a2 - y2b2 = 1 to its asymtotes is

  • a2b2a2 - b2

  • a2b2a2 + b2

  • a2 + b2a2b2

  • a2 - b2a2b2


16.

If the lines 2x + 3y +12 = 0, x - yy + k = 0 are conjugate with respect to the parabola y2 = 8x, then k is equal to

  • 10

  • 72

  • - 12

  • - 2


Advertisement

17.

Find the equation to the parabola, whose axis parallel to they-axis and which passes through the points (0, 4), (1, 9) and (4, 5) is

  • y = - x+ x + 4

  • y = - x+ x + 1

  • y = - 1912x2 + 7912x + 4

  • y = - 1912x2 + 8912x + 4


C.

y = - 1912x2 + 7912x + 4

The equation of parabola parallel to y-axis isy = Ax2 + Bx + C         ...iThe point (0, 4), (1, 9) and (4, 5) lies on Eq. (i).Then, 4 = 0 + 0 + C             C = 4            ...ii    9 = A + B + Cor 9 =  A + B + 4        C = 4   A + B = 5 = 5           ...iiiand 5 = 16A + 4B + C       C = 4or    5 = 16A + 4B + 4 16A + 4B = 1or      4A + B = 14Solving Eqs. (iii) and (iv), we getWe get A = - 1912, B = 7912Substituting the values of A, B and C from Eqs. (ii) and (v) in Eq. (i),then equation of parabola isy = - 1912x2 + 7912x + 4


Advertisement
18.

If ∝, ß, y are the roots of the equation x3 - 6x2 + 11x - 6 = 0 and if a = ∝2 + ß2 + γ2, b = ∝ß + ßγ + γ∝ and  c = (∝ + ß)(ß + γ)(γ + ∝), then the correct inequality among the following is

  • a < b < c

  • b < a < c

  • b < c < a

  • c < a < b


Advertisement
19.

A plane meets the coordinate axes at A, B, C so that the centroid of the triangle ABC is (1, 2, 4). Then, the equation of the plane is

  • x + 2y +4z =12

  • 4x + 2y + z = 12

  • x + 2y + 4z = 3

  • 4x + 2y + z = 3


20.

If (2, 3, - 3) is one end of a diameter of the sphere x2 + y+ z- 6x - 12y - 2z + 20 = 0, then the other end of the diameter is

  • (4, 9, - 1)

  • (4, 9, 5)

  • (- 8, - 15, 1)

  • (8, 15, 5)


Advertisement