The values of a function f(x) at different values of x are as fol

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

If 1 - cosxcsc2xdx = fx + c, then fx is equal to 

  • tanx2

  • cotx2

  • 2tanx2

  • 12tanx2


72.

If In = 0nπ4tanxdx, thenI2 + I4, I3 + I5, I4 + I6, . . . , are in

  • arithmatic progression

  • geometric progression

  • harmonic progression

  • arithmetic-geometric progression


73.

The area (in square units) of the region enclosed by the two circles x2 + y2 = 1 and (x - 1)2 + y2 = 1 is

  • 2π3 + 32

  • π3 + 32

  • π3 - 32

  • 2π3 - 32


Advertisement

74.

The values of a function f(x) at different values of x are as follows
x 0 1 2 3 4 5
f(x) 2 3 6 11 18 27

Then, the approximate area (in square units) bounded by the curve y = f(x) and x-axis between x = 0 and 5, using the Trapezoidal rule, is

  • 50

  • 75

  • 52.5

  • 62.5


C.

52.5

h = difference of two values of x

Take value of f(x) as (y0, y1, y2, . . , y5)

Then by Trapezoidal rule

Now, x0x0 + nhfxdx= h2y0 + y5 + 2y1 + y2 + y3 + y4= 122 +27 + 23 + 6 + 11 + 18= 1229 + 238 = 1229 + 76= 12 × 105 = 52.5

 

x 0 1 2 3 4 5
f(x) 2 3 6 11 18 27

Advertisement
Advertisement
75.

The solution of tanydydx = sinx + y + sinx - y is

  • sec(y) = 2cos(x) + c

  • sec(y) = - 2cos(x) + c

  • tan(y) =  - 2cos(x) + c

  • sec2(y) = - 2cos(x) + c


76.

A family of curves has the differential equation xydydx = 2y2 - x2. Then, the family of curves is

  • y2 = cx2 + x3

  • y2 = cx4 + x3

  • y2 = x + cx4

  • y2 = x2 + cx4


77.

The length of the common chord of the circles of radii 15 and 20, whose centres are 25 unit of distance apart, is

  • 12

  • 16

  • 24

  • 25


78.

Let M be the foot of the perpendicular from a point P on the parabola y = 8(x - 3) onto its directrix and let S be the focus ofthe parabola. If  SPM is an equilateral triangle, then P is equal to

  • (43, 8)

  • (8, 43)

  • (9, 43)

  • (43, 9)


Advertisement
79.

The point dividing the join of (3, - 2, 1) and( - 2, 3 11) in the ratio 2 : 3 is

  • (1, 1, 4)

  • (1, 0, 5)

  • (2, 3, 5)

  • (0, 6, - 1)


80.

The longest distance of the point (a, 0) from the curve 2x2 + y= 2x is

  • 1 + a

  • 1 - a

  • 1 - 2a +2a2

  • 1 - 2a + 3a2


Advertisement