If A = and A2 is the unit matrix, then the value of x3 + x - 2 is equal to
- 8
- 2
0
1
If , then x is equal to
12
- 12
- 32
32
The value of tan-12 + tan-13 is equal to
3π4
π4
π3
tan-16
∫dxx + 1x is equal to
tan-1x + C
2tan-1x + C
tan-1x32 + C
∫logxx2dx is equal to
logxx + 1x2 + C
- logxx + 2x + C
- logxx - 12x + C
- logxx - 1x + C
If ∫fxlogcosxdx = - loglogcosx + C, then f(x) is equal to
tanx
- sinx
- cosx
- tanx
∫xsin-1x1 - x2dx is equal to
x - sin-1x + C
x - 1 - x2sin-1x + C
x + sin-1x + C
x + 1 - x2sin-1x + C
∫4ex - 6e- x9ex - 4e- xdx is equal to
32x + 3536log9e2x - 4 + C
32x - 3536log9e2x - 4 + C
- 32x + 3536log9e2x - 4 + C
- 52x + 3536log9e2x - 4 + C
C.
∫4ex + 6e- x9e2x - 4dx= ∫4e2x + 69e2x - 4dx= 4∫e2x9e2x - 4 + 6∫e- 2x9 - 4e- 2xPut t1 = 9e2x - 4 and t2 = 9 - 4e- 2xdt1 = 18e2xdx and dt2 = 8e- 2xdx= 4∫1t1 . dt118 + 6∫1t2 . dt28= 29∫dt1t1 + 34∫dt2t2= 29logt1 + 34logt2 + C= 29log9e2x - 4 + 34log9 - 4e- 2x + C= 29log9e2x - 4 + 34log9e2x - 4 - 34loge2x + C= 29 + 34og9e2x - 4 - 342x + C ∵ loge = 1= - 32x + 3536log9e2x - 4 + C
∫1 - x1 + xdx is equal to
sin-1x + 1 - x2 + C
sin-1x - 21 - x2 + C
2sin-1x - 1 - x2 + C
sin-1x - 1 - x2 + C
∫dx1 + tanx is equal to
12 + 12logcosx + sinx + C
x2 + 12logcosx - sinx + C
12 + 12logcosx - sinx + C
x2 + 12logcosx + sinx + C