The differential equation representing the family of curves y2 =

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

If 0ax2 - 11 - xdx = - 12, then the value of a is equal to

  • - 1

  • 1

  • 2

  • - 2


22.

The value of the integral 01x1 - x5dx is equal to

  • 16

  • 17

  • 67

  • 142


23.

If [x] denotes the greatest integer less than or equal to x, then the value of 02x - 2 + xdx is equal to

  • 2

  • 3

  • 1

  • 4


24.

01xe- 5xdx is equal to

  • 125 - 6e- 525

  • 125 + 6e- 525

  • - 125 - 6e- 525

  • 125 + 125e- 5


Advertisement
25.

The area bounded by the curve y = sin(x) between x = 0 and x = 2π is (in square units)

  • 1

  • 2

  • 0

  • 4


Advertisement

26.

The differential equation representing the family of curves y2 = 2c (x + c) where c is a positive parameter, is of

  • order 1, degree 2

  • order 1, degree 3

  • order 2, degree 3

  • order 2, degree 2


B.

order 1, degree 3

y2 = 2cx + c            ...(i)Differentiating w.r.t. x,2ydydx = 2c c = ydydxOn putting this value in Eq. (i),y2 = 2x . ydydx + 2ydydxydydx2ydydxydydx = y2 - 2xydydxSquaring on both sides,4y2dydx2y . dydx = y2 - 2xydydx24y3dydx3 = y4 + 4x2y2dydx2 - 2xy3dydx4ydydx3 - 4x2dydx2 + 2xydydx - y2 = 0

Hence, order is 1 and degree is 3.


Advertisement
27.

An integrating factor of the differential equation 1 + x2dydx + xy = x is

  • x1 + x2

  • 12log1 + x2

  • 1 + x2

  • x


28.

The solution of the differential equation xdydx + y = 1x2 at (1, 2) is

  • x2y + 1 = 3x

  • x2y + 1 = 0

  • xy + 1 = 3x

  • x2(y + 1) = 3x


Advertisement
29.

The general solution of the differential equation dydx = eyex + e- x + 2x is

  • e- y = ex + e- x + x2 + C

  • e- y = e- x - ex - x2 + C

  • e- y = - e- x - ex - x2 + C

  • ey = e- x + ex + x2 + C


30.

If a is perpendicular to b, then the vector a × a × a × a × b is equal to

  • a2b

  • ab

  • a3b

  • a4b


Advertisement