In a ∆ABC, if cot(A) cot(B) cot(C) > 0, then the triangl

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

Evaluate k = 16sin27 - icos27

  • 2i

  • - i

  • i

  • - 2i


2.

If a, b, c are in HP, then the value of b +ab - a + b + cb - c is

  • 0

  • 1

  • 2

  • 3


3.

If x2 - 4x + log1/2(a) = 0 does not have two distinct real roots, then maximum value of a is

  • - 14

  • 116

  • 14

  • None of these


4.

A polygon has 44 diagonals. Find the number of sides.

  • 8

  • 10

  • 11

  • 13


Advertisement
5.

The coefficient of x4 in the expansion of log (1 + 3x + 2x2) is

  • 163

  • - 163

  • 174

  • - 174


Advertisement

6.

In a ABC, if cot(A) cot(B) cot(C) > 0, then the triangle is

  • acute angled

  • right angled

  • obtuse angled

  • does not exist


A.

acute angled

Since, cotAcotBcotC > 0 cotA, cotB and cotC are positive. Triangle is acute angled.


Advertisement
7.

If 1 + sinθ - cosθ 1 + sinθ + cosθ2 = λ1 - cosθ1 +cosθ, then λ equals

  • - 1

  • 1

  • 2

  • - 2


8.

If the sides of a ABC are in AP and a is the smallest side, then cos(A) equals

  • 3c - 4b2c

  • 3c - 4b2b

  • 4c - 3b2c

  • 4c - 3b2b


Advertisement
9.

The number of common tangents that can be drawn to the circles x2 + y2 - 4x - 6y - 3 = 0 and x2 + y2 + 2x + 2y + 1 = 0 is

  • 1

  • 2

  • 3

  • 4


10.

If two circles (x - 1)2 + (y - 3)2 = r2 and x2 + y2 - 8x + 2y + 8 = 0 intersect in two distinct points, then

  • 2 < r < 8

  • r < 2

  • r = 2

  • r > 2


Advertisement