The solution of 25d2ydx2 - 10dydx + y&nb

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

61.

Let y = 3x - 13x + 1sinx + loge1 + x, x > - 1. Then, at x = 0, dydx equals

  • 1

  • 0

  • - 1

  • - 2


62.

Maximum value of the function f(x) = x8 + 2x on the interval [1, 6] is

  • 1

  • 98

  • 1312

  • 178


63.

For  - π2 < x < 3π2, the avlue of ddxtan-1cosx1 + sinx is equal to

  • 12

  • 12

  • 1

  • sinx1 + sinx2


64.

If f is a real-valued differentiable function such that f(x)f' (x) < 0 for all real x, then

  • f(x) must be an increasing function

  • f(x) must be a decreasing function

  • f(x) must be an increasing function

  • f(x) must be a decreasing function


Advertisement
65.

Rolle's theorem is applicable in the interval [- 2, 2] for the function

  • f(x) = x3

  • f(x) = 4x4

  • f(x) = 2x3 + 3

  • f(x) = πx


Advertisement

66.

The solution of 25d2ydx2 - 10dydx + y = 0, y(0) = 1, y(1) = 2e15 is

  • y = e5x + e- 5x

  • y = 1 + xe5x

  • y = 1 + xex5

  • y = 1 + xe- x5


C.

y = 1 + xex5

Let y = emx be the solution of given differential equation,

     dydx = memx  d2ydx2 = m2emx       25d2ydx2 - 10dydx + y = 025m2emx - 10 memx + emx = 0   emx25m2 - 10m + 1 = 0 Auxiliary equation 25m2 - 10m + 1 = 0                            emx  0 5m2 - 25m × 1 + 1 = 0                       5m - 12 = 0 m = 15, 15

Since, roots are real and euqal.

 General solution is y = c1 +c2xex5      ...(i)y0 = 1  c1 = 1y1 = 2e15  2ee5 = c1 + c2e15 c1 + c2 = 2  c1 = 1

Putting the value of c1 and c2 in Eq. (i), we get particular solution

y = 1 + xx5


Advertisement
67.

The system of linear equations λx + y + z = 3,  x - y - 2z = 6, - x + y + z = µ has

  • infinite number of solutions for λ -1 and all µ

  • infinite number of solutions for λ = - 1 and μ = 3

  • no solution for λ  - 1

  • unique solution for λ = - 1 and μ = 3


68.

If f(x) and g(x) are twice differentiable functions on (0, 3) satisfying f"(x) = g''(c), f'(1) = 4g'(D) = 6, f(2) = 3, g(2) = 9, then f(1) - g(1) is

  • 4

  • - 4

  • 0

  • - 2


Advertisement
69.

Two coins are available, one fair and the other two headed. Choose a coin and toss it once; assume that the unbiased coin is chosen with probability 34. Given that the outcome is head, 4 the probability that the two headed coin was chosen, is

  • 35

  • 25

  • 15

  • 27


70.

The general solution of the differential equation

dydx = x +y +12x +2y +1 is

  • loge3x + 3y + 2 + 3x + 6y = C

  • loge3x + 3y + 2 - 3x + 6y = C

  • loge3x + 3y + 2 - 3x - 6y = C

  • loge3x + 3y + 2 + 3x - 6y = C


Advertisement