∫dx4sin2x + 3cos2x from Mathematics JEE Year 2012

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

The angle between the planes 3x + 4y + 5z = 3 and 4x - 3y + 5z = 9 is equal to

  • π2

  • π4

  • π6

  • π3


42.

The vector equation of the plane through the point (2, 1, - 1) and parallel to the plane r - (i + 3j - k) = 0 is

  • r . (i + 9j + 11k) = 6

  • r . (i - 9j + 11k) = 4

  • r . (i + 3j - k) = 6

  • r . (i + 3j - k) = 4


43.

If the foot of the perpendicular drawn from the point (5, 1, - 3) to a plane is (1, - 1, 3), then the equation of the plane is

  • 2x + y - 3z + 8 = 0

  • 2x + y + 3z + 8 = 0

  • 2x - y - 3z + 8 = 0

  • 2x - y + 3z + 8 = 0


44.

The equation of the plane through the line of intersection of the planes x - y + z + 3 = 0 and x + y + 22 + 1 = 0 and parallel to x-axis is

  • 2y - z = 2

  • 2y + z = 2

  • 4y + z = 4

  • y - 2z = 3


Advertisement
45.

5x dx1 - x3 is equal to

  • 52x - 12 - 5x - 1 + C

  • 52x - 12 + 5x - 1 + C

  • 53x - 12 + 52x - 1 + C

  • 53x - 12 - 52x - 1 + C


46.

dxx - x is equal to

  • 2logx - 1 + C

  • 2logx + 1 + C

  • logx - 1 + C

  • 12logx + 1 + C


Advertisement

47.

dx4sin2x + 3cos2x

  • 34tan-12tanx3 + C

  • 123tan-1tanx3 + C

  • 23tan-12tanx3 + C

  • 123tan-12tanx3 + C


D.

123tan-12tanx3 + C

Let I = dx4sin2x + 3cos2xDividing numerator: and denominator by cos2x, we get= sec2x4tan2x + 3Put tanx = t  sec2xdx = dt I = dt4t2 + 3 = 14dtt2 + 34      = 14 × 132tan-1132 + C      = 123tan-12tanx3 + C


Advertisement
48.

secxdxcos2x is equal to

  • 2sin-1tanx

  • tan-1tanx2 + C

  • sin-1tanx

  • 32tan-1tanx3 + C


Advertisement
49.

exxxlogx + 1dx is equal to

  • exx + C

  • xexlogx + C

  • exlogx + C

  • x(exlogx) + C


50.

1 + logx1 + x logx2dx is equal to

  • 11 + xlogx + C

  • 11 + logx + C

  • - 11 + xlogx + C

  • log11 + logx + C


Advertisement